gemma / app_v2.py
dasomaru's picture
Upload folder using huggingface_hub
2c5f455 verified
raw
history blame contribute delete
2.21 kB
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from retriever.vectordb import search_documents # ๐Ÿง  RAG ๊ฒ€์ƒ‰๊ธฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
model_name = "dasomaru/gemma-3-4bit-it-demo"
# ๐Ÿš€ tokenizer๋Š” CPU์—์„œ๋„ ๋ฏธ๋ฆฌ ๋ถˆ๋Ÿฌ์˜ฌ ์ˆ˜ ์žˆ์Œ
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# ๐Ÿš€ model์€ CPU๋กœ๋งŒ ๋จผ์ € ์˜ฌ๋ฆผ (GPU ์•„์ง ์—†์Œ)
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.float16, # 4bit model์ด๋‹ˆ๊นŒ
trust_remote_code=True,
)
@spaces.GPU(duration=300)
def generate_response(query):
# ๐Ÿš€ generate_response ํ•จ์ˆ˜ ์•ˆ์—์„œ ๋งค๋ฒˆ ๋กœ๋“œ
# tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# model = AutoModelForCausalLM.from_pretrained(
# model_name,
# torch_dtype=torch.float16,
# device_map="auto", # โœ… ์ค‘์š”: ์ž๋™์œผ๋กœ GPU ํ• ๋‹น
# trust_remote_code=True,
# )
tokenizer = AutoTokenizer.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
model = AutoModelForCausalLM.from_pretrained("dasomaru/gemma-3-4bit-it-demo")
model.to("cuda")
# 1. ๊ฒ€์ƒ‰
top_k = 5
retrieved_docs = search_documents(query, top_k=top_k)
# 2. ํ”„๋กฌํ”„ํŠธ ์กฐ๋ฆฝ
prompt = (
"๋‹น์‹ ์€ ๊ณต์ธ์ค‘๊ฐœ์‚ฌ ์‹œํ—˜ ๋ฌธ์ œ ์ถœ์ œ ์ „๋ฌธ๊ฐ€์ž…๋‹ˆ๋‹ค.\n\n"
"๋‹ค์Œ์€ ๊ธฐ์ถœ ๋ฌธ์ œ ๋ฐ ๊ด€๋ จ ๋ฒ•๋ น ์ •๋ณด์ž…๋‹ˆ๋‹ค:\n"
)
for idx, doc in enumerate(retrieved_docs, 1):
prompt += f"- {doc}\n"
prompt += f"\n์ด ์ •๋ณด๋ฅผ ์ฐธ๊ณ ํ•˜์—ฌ ์‚ฌ์šฉ์ž์˜ ์š”์ฒญ์— ๋‹ต๋ณ€ํ•ด ์ฃผ์„ธ์š”.\n\n"
prompt += f"[์งˆ๋ฌธ]\n{query}\n\n[๋‹ต๋ณ€]\n"
# 3. ๋‹ต๋ณ€ ์ƒ์„ฑ
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) # โœ… model.device
outputs = model.generate(
**inputs,
max_new_tokens=512,
temperature=0.7,
top_p=0.9,
top_k=50,
do_sample=True,
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
demo = gr.Interface(fn=generate_response, inputs="text", outputs="text")
demo.launch()