import gradio as gr import spaces from transformers import pipeline # Create the text generation pipeline. # If you're running on GPU, you can specify device=0 (or use device_map="auto" if supported). pipe = pipeline("text-generation", model="TheBloke/Chronoboros-33B-GPTQ", device=0) @spaces.GPU def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p): # Build the prompt from system message and conversation history. prompt = f"{system_message}\n" for user_text, assistant_text in history: if user_text: prompt += f"User: {user_text}\n" if assistant_text: prompt += f"Assistant: {assistant_text}\n" prompt += f"User: {message}\nAssistant: " # Generate a response using the pipeline. # The pipeline returns a list of dictionaries; we take the generated text from the first output. output = pipe(prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p) full_text = output[0]["generated_text"] # Remove the prompt from the generated text to isolate the response. response_text = full_text[len(prompt):] # Simulate streaming output in chunks (e.g., 5 characters at a time). chunk_size = 5 for i in range(0, len(response_text), chunk_size): yield response_text[: i + chunk_size] # Configure the ChatInterface with additional inputs. demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()