Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files- api_app.py +313 -0
- app.py +47 -325
api_app.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import sys
|
5 |
+
from typing import Sequence, Mapping, Any, Union
|
6 |
+
import torch
|
7 |
+
import gradio as gr
|
8 |
+
from PIL import Image
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
import spaces
|
11 |
+
from comfy import model_management
|
12 |
+
|
13 |
+
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Redux-dev", filename="flux1-redux-dev.safetensors", local_dir="models/style_models")
|
14 |
+
hf_hub_download(repo_id="black-forest-labs/FLUX.1-Depth-dev", filename="flux1-depth-dev.safetensors", local_dir="models/diffusion_models")
|
15 |
+
hf_hub_download(repo_id="Comfy-Org/sigclip_vision_384", filename="sigclip_vision_patch14_384.safetensors", local_dir="models/clip_vision")
|
16 |
+
hf_hub_download(repo_id="Kijai/DepthAnythingV2-safetensors", filename="depth_anything_v2_vitl_fp32.safetensors", local_dir="models/depthanything")
|
17 |
+
hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae/FLUX1")
|
18 |
+
hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders")
|
19 |
+
t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders/t5")
|
20 |
+
|
21 |
+
# Import all the necessary functions from the original script
|
22 |
+
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
|
23 |
+
try:
|
24 |
+
return obj[index]
|
25 |
+
except KeyError:
|
26 |
+
return obj["result"][index]
|
27 |
+
|
28 |
+
# Add all the necessary setup functions from the original script
|
29 |
+
def find_path(name: str, path: str = None) -> str:
|
30 |
+
if path is None:
|
31 |
+
path = os.getcwd()
|
32 |
+
if name in os.listdir(path):
|
33 |
+
path_name = os.path.join(path, name)
|
34 |
+
print(f"{name} found: {path_name}")
|
35 |
+
return path_name
|
36 |
+
parent_directory = os.path.dirname(path)
|
37 |
+
if parent_directory == path:
|
38 |
+
return None
|
39 |
+
return find_path(name, parent_directory)
|
40 |
+
|
41 |
+
def add_comfyui_directory_to_sys_path() -> None:
|
42 |
+
comfyui_path = find_path("ComfyUI")
|
43 |
+
if comfyui_path is not None and os.path.isdir(comfyui_path):
|
44 |
+
sys.path.append(comfyui_path)
|
45 |
+
print(f"'{comfyui_path}' added to sys.path")
|
46 |
+
|
47 |
+
def add_extra_model_paths() -> None:
|
48 |
+
try:
|
49 |
+
from main import load_extra_path_config
|
50 |
+
except ImportError:
|
51 |
+
from utils.extra_config import load_extra_path_config
|
52 |
+
extra_model_paths = find_path("extra_model_paths.yaml")
|
53 |
+
if extra_model_paths is not None:
|
54 |
+
load_extra_path_config(extra_model_paths)
|
55 |
+
else:
|
56 |
+
print("Could not find the extra_model_paths config file.")
|
57 |
+
|
58 |
+
# Initialize paths
|
59 |
+
add_comfyui_directory_to_sys_path()
|
60 |
+
add_extra_model_paths()
|
61 |
+
|
62 |
+
def import_custom_nodes() -> None:
|
63 |
+
import asyncio
|
64 |
+
import execution
|
65 |
+
from nodes import init_extra_nodes
|
66 |
+
import server
|
67 |
+
loop = asyncio.new_event_loop()
|
68 |
+
asyncio.set_event_loop(loop)
|
69 |
+
server_instance = server.PromptServer(loop)
|
70 |
+
execution.PromptQueue(server_instance)
|
71 |
+
init_extra_nodes()
|
72 |
+
|
73 |
+
# Import all necessary nodes
|
74 |
+
from nodes import (
|
75 |
+
StyleModelLoader,
|
76 |
+
VAEEncode,
|
77 |
+
NODE_CLASS_MAPPINGS,
|
78 |
+
LoadImage,
|
79 |
+
CLIPVisionLoader,
|
80 |
+
SaveImage,
|
81 |
+
VAELoader,
|
82 |
+
CLIPVisionEncode,
|
83 |
+
DualCLIPLoader,
|
84 |
+
EmptyLatentImage,
|
85 |
+
VAEDecode,
|
86 |
+
UNETLoader,
|
87 |
+
CLIPTextEncode,
|
88 |
+
)
|
89 |
+
|
90 |
+
# Initialize all constant nodes and models in global context
|
91 |
+
import_custom_nodes()
|
92 |
+
|
93 |
+
# Global variables for preloaded models and constants
|
94 |
+
#with torch.inference_mode():
|
95 |
+
# Initialize constants
|
96 |
+
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
|
97 |
+
CONST_1024 = intconstant.get_value(value=1024)
|
98 |
+
|
99 |
+
# Load CLIP
|
100 |
+
dualcliploader = DualCLIPLoader()
|
101 |
+
CLIP_MODEL = dualcliploader.load_clip(
|
102 |
+
clip_name1="t5/t5xxl_fp16.safetensors",
|
103 |
+
clip_name2="clip_l.safetensors",
|
104 |
+
type="flux",
|
105 |
+
)
|
106 |
+
|
107 |
+
# Load VAE
|
108 |
+
vaeloader = VAELoader()
|
109 |
+
VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors")
|
110 |
+
|
111 |
+
# Load UNET
|
112 |
+
unetloader = UNETLoader()
|
113 |
+
UNET_MODEL = unetloader.load_unet(
|
114 |
+
unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
|
115 |
+
)
|
116 |
+
|
117 |
+
# Load CLIP Vision
|
118 |
+
clipvisionloader = CLIPVisionLoader()
|
119 |
+
CLIP_VISION_MODEL = clipvisionloader.load_clip(
|
120 |
+
clip_name="sigclip_vision_patch14_384.safetensors"
|
121 |
+
)
|
122 |
+
|
123 |
+
# Load Style Model
|
124 |
+
stylemodelloader = StyleModelLoader()
|
125 |
+
STYLE_MODEL = stylemodelloader.load_style_model(
|
126 |
+
style_model_name="flux1-redux-dev.safetensors"
|
127 |
+
)
|
128 |
+
|
129 |
+
# Initialize samplers
|
130 |
+
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
|
131 |
+
SAMPLER = ksamplerselect.get_sampler(sampler_name="euler")
|
132 |
+
|
133 |
+
# Initialize depth model
|
134 |
+
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]()
|
135 |
+
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS["DownloadAndLoadDepthAnythingV2Model"]()
|
136 |
+
DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel(
|
137 |
+
model="depth_anything_v2_vitl_fp32.safetensors"
|
138 |
+
)
|
139 |
+
|
140 |
+
cliptextencode = CLIPTextEncode()
|
141 |
+
loadimage = LoadImage()
|
142 |
+
vaeencode = VAEEncode()
|
143 |
+
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
|
144 |
+
instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]()
|
145 |
+
clipvisionencode = CLIPVisionEncode()
|
146 |
+
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
|
147 |
+
emptylatentimage = EmptyLatentImage()
|
148 |
+
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
|
149 |
+
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
|
150 |
+
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
|
151 |
+
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
|
152 |
+
vaedecode = VAEDecode()
|
153 |
+
cr_text = NODE_CLASS_MAPPINGS["CR Text"]()
|
154 |
+
saveimage = SaveImage()
|
155 |
+
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
|
156 |
+
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
|
157 |
+
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()
|
158 |
+
|
159 |
+
model_loaders = [CLIP_MODEL, VAE_MODEL, UNET_MODEL, CLIP_VISION_MODEL]
|
160 |
+
|
161 |
+
model_management.load_models_gpu([
|
162 |
+
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders
|
163 |
+
])
|
164 |
+
|
165 |
+
@spaces.GPU
|
166 |
+
def generate_image(prompt, structure_image, style_image, depth_strength=15, style_strength=0.5, progress=gr.Progress(track_tqdm=True)) -> str:
|
167 |
+
"""Main generation function that processes inputs and returns the path to the generated image."""
|
168 |
+
with torch.inference_mode():
|
169 |
+
# Set up CLIP
|
170 |
+
clip_switch = cr_clip_input_switch.switch(
|
171 |
+
Input=1,
|
172 |
+
clip1=get_value_at_index(CLIP_MODEL, 0),
|
173 |
+
clip2=get_value_at_index(CLIP_MODEL, 0),
|
174 |
+
)
|
175 |
+
|
176 |
+
# Encode text
|
177 |
+
text_encoded = cliptextencode.encode(
|
178 |
+
text=prompt,
|
179 |
+
clip=get_value_at_index(clip_switch, 0),
|
180 |
+
)
|
181 |
+
empty_text = cliptextencode.encode(
|
182 |
+
text="",
|
183 |
+
clip=get_value_at_index(clip_switch, 0),
|
184 |
+
)
|
185 |
+
|
186 |
+
# Process structure image
|
187 |
+
structure_img = loadimage.load_image(image=structure_image)
|
188 |
+
|
189 |
+
# Resize image
|
190 |
+
resized_img = imageresize.execute(
|
191 |
+
width=get_value_at_index(CONST_1024, 0),
|
192 |
+
height=get_value_at_index(CONST_1024, 0),
|
193 |
+
interpolation="bicubic",
|
194 |
+
method="keep proportion",
|
195 |
+
condition="always",
|
196 |
+
multiple_of=16,
|
197 |
+
image=get_value_at_index(structure_img, 0),
|
198 |
+
)
|
199 |
+
|
200 |
+
# Get image size
|
201 |
+
size_info = getimagesizeandcount.getsize(
|
202 |
+
image=get_value_at_index(resized_img, 0)
|
203 |
+
)
|
204 |
+
|
205 |
+
# Encode VAE
|
206 |
+
vae_encoded = vaeencode.encode(
|
207 |
+
pixels=get_value_at_index(size_info, 0),
|
208 |
+
vae=get_value_at_index(VAE_MODEL, 0),
|
209 |
+
)
|
210 |
+
|
211 |
+
# Process depth
|
212 |
+
depth_processed = depthanything_v2.process(
|
213 |
+
da_model=get_value_at_index(DEPTH_MODEL, 0),
|
214 |
+
images=get_value_at_index(size_info, 0),
|
215 |
+
)
|
216 |
+
|
217 |
+
# Apply Flux guidance
|
218 |
+
flux_guided = fluxguidance.append(
|
219 |
+
guidance=depth_strength,
|
220 |
+
conditioning=get_value_at_index(text_encoded, 0),
|
221 |
+
)
|
222 |
+
|
223 |
+
# Process style image
|
224 |
+
style_img = loadimage.load_image(image=style_image)
|
225 |
+
|
226 |
+
# Encode style with CLIP Vision
|
227 |
+
style_encoded = clipvisionencode.encode(
|
228 |
+
crop="center",
|
229 |
+
clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0),
|
230 |
+
image=get_value_at_index(style_img, 0),
|
231 |
+
)
|
232 |
+
|
233 |
+
# Set up conditioning
|
234 |
+
conditioning = instructpixtopixconditioning.encode(
|
235 |
+
positive=get_value_at_index(flux_guided, 0),
|
236 |
+
negative=get_value_at_index(empty_text, 0),
|
237 |
+
vae=get_value_at_index(VAE_MODEL, 0),
|
238 |
+
pixels=get_value_at_index(depth_processed, 0),
|
239 |
+
)
|
240 |
+
|
241 |
+
# Apply style
|
242 |
+
style_applied = stylemodelapplyadvanced.apply_stylemodel(
|
243 |
+
strength=style_strength,
|
244 |
+
conditioning=get_value_at_index(conditioning, 0),
|
245 |
+
style_model=get_value_at_index(STYLE_MODEL, 0),
|
246 |
+
clip_vision_output=get_value_at_index(style_encoded, 0),
|
247 |
+
)
|
248 |
+
|
249 |
+
# Set up empty latent
|
250 |
+
empty_latent = emptylatentimage.generate(
|
251 |
+
width=get_value_at_index(resized_img, 1),
|
252 |
+
height=get_value_at_index(resized_img, 2),
|
253 |
+
batch_size=1,
|
254 |
+
)
|
255 |
+
|
256 |
+
# Set up guidance
|
257 |
+
guided = basicguider.get_guider(
|
258 |
+
model=get_value_at_index(UNET_MODEL, 0),
|
259 |
+
conditioning=get_value_at_index(style_applied, 0),
|
260 |
+
)
|
261 |
+
|
262 |
+
# Set up scheduler
|
263 |
+
schedule = basicscheduler.get_sigmas(
|
264 |
+
scheduler="simple",
|
265 |
+
steps=28,
|
266 |
+
denoise=1,
|
267 |
+
model=get_value_at_index(UNET_MODEL, 0),
|
268 |
+
)
|
269 |
+
|
270 |
+
# Generate random noise
|
271 |
+
noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))
|
272 |
+
|
273 |
+
# Sample
|
274 |
+
sampled = samplercustomadvanced.sample(
|
275 |
+
noise=get_value_at_index(noise, 0),
|
276 |
+
guider=get_value_at_index(guided, 0),
|
277 |
+
sampler=get_value_at_index(SAMPLER, 0),
|
278 |
+
sigmas=get_value_at_index(schedule, 0),
|
279 |
+
latent_image=get_value_at_index(empty_latent, 0),
|
280 |
+
)
|
281 |
+
|
282 |
+
# Decode VAE
|
283 |
+
decoded = vaedecode.decode(
|
284 |
+
samples=get_value_at_index(sampled, 0),
|
285 |
+
vae=get_value_at_index(VAE_MODEL, 0),
|
286 |
+
)
|
287 |
+
|
288 |
+
# Save image
|
289 |
+
prefix = cr_text.text_multiline(text="Flux_BFL_Depth_Redux")
|
290 |
+
|
291 |
+
saved = saveimage.save_images(
|
292 |
+
filename_prefix=get_value_at_index(prefix, 0),
|
293 |
+
images=get_value_at_index(decoded, 0),
|
294 |
+
)
|
295 |
+
saved_path = f"output/{saved['ui']['images'][0]['filename']}"
|
296 |
+
return saved_path
|
297 |
+
|
298 |
+
api_app = gr.Interface(
|
299 |
+
fn=generate_image,
|
300 |
+
inputs=[
|
301 |
+
gr.Textbox(label="Prompt"),
|
302 |
+
gr.Image(label="Structure Image", type="filepath"),
|
303 |
+
gr.Image(label="Style Image", type="filepath"),
|
304 |
+
gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength"),
|
305 |
+
gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength"),
|
306 |
+
],
|
307 |
+
outputs=gr.Image(label="Generated Image"),
|
308 |
+
title="FLUX Style Shaping API",
|
309 |
+
description="API para geração de imagens utilizando o modelo FLUX.",
|
310 |
+
)
|
311 |
+
|
312 |
+
if __name__ == "__main__":
|
313 |
+
api_app.launch()
|
app.py
CHANGED
@@ -1,329 +1,51 @@
|
|
1 |
-
|
2 |
-
import random
|
3 |
-
import sys
|
4 |
-
from typing import Sequence, Mapping, Any, Union
|
5 |
-
import torch
|
6 |
import gradio as gr
|
|
|
7 |
from PIL import Image
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
return
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
if extra_model_paths is not None:
|
53 |
-
load_extra_path_config(extra_model_paths)
|
54 |
-
else:
|
55 |
-
print("Could not find the extra_model_paths config file.")
|
56 |
-
|
57 |
-
# Initialize paths
|
58 |
-
add_comfyui_directory_to_sys_path()
|
59 |
-
add_extra_model_paths()
|
60 |
-
|
61 |
-
def import_custom_nodes() -> None:
|
62 |
-
import asyncio
|
63 |
-
import execution
|
64 |
-
from nodes import init_extra_nodes
|
65 |
-
import server
|
66 |
-
loop = asyncio.new_event_loop()
|
67 |
-
asyncio.set_event_loop(loop)
|
68 |
-
server_instance = server.PromptServer(loop)
|
69 |
-
execution.PromptQueue(server_instance)
|
70 |
-
init_extra_nodes()
|
71 |
-
|
72 |
-
# Import all necessary nodes
|
73 |
-
from nodes import (
|
74 |
-
StyleModelLoader,
|
75 |
-
VAEEncode,
|
76 |
-
NODE_CLASS_MAPPINGS,
|
77 |
-
LoadImage,
|
78 |
-
CLIPVisionLoader,
|
79 |
-
SaveImage,
|
80 |
-
VAELoader,
|
81 |
-
CLIPVisionEncode,
|
82 |
-
DualCLIPLoader,
|
83 |
-
EmptyLatentImage,
|
84 |
-
VAEDecode,
|
85 |
-
UNETLoader,
|
86 |
-
CLIPTextEncode,
|
87 |
-
)
|
88 |
-
|
89 |
-
# Initialize all constant nodes and models in global context
|
90 |
-
import_custom_nodes()
|
91 |
-
|
92 |
-
# Global variables for preloaded models and constants
|
93 |
-
#with torch.inference_mode():
|
94 |
-
# Initialize constants
|
95 |
-
intconstant = NODE_CLASS_MAPPINGS["INTConstant"]()
|
96 |
-
CONST_1024 = intconstant.get_value(value=1024)
|
97 |
-
|
98 |
-
# Load CLIP
|
99 |
-
dualcliploader = DualCLIPLoader()
|
100 |
-
CLIP_MODEL = dualcliploader.load_clip(
|
101 |
-
clip_name1="t5/t5xxl_fp16.safetensors",
|
102 |
-
clip_name2="clip_l.safetensors",
|
103 |
-
type="flux",
|
104 |
-
)
|
105 |
-
|
106 |
-
# Load VAE
|
107 |
-
vaeloader = VAELoader()
|
108 |
-
VAE_MODEL = vaeloader.load_vae(vae_name="FLUX1/ae.safetensors")
|
109 |
-
|
110 |
-
# Load UNET
|
111 |
-
unetloader = UNETLoader()
|
112 |
-
UNET_MODEL = unetloader.load_unet(
|
113 |
-
unet_name="flux1-depth-dev.safetensors", weight_dtype="default"
|
114 |
-
)
|
115 |
-
|
116 |
-
# Load CLIP Vision
|
117 |
-
clipvisionloader = CLIPVisionLoader()
|
118 |
-
CLIP_VISION_MODEL = clipvisionloader.load_clip(
|
119 |
-
clip_name="sigclip_vision_patch14_384.safetensors"
|
120 |
-
)
|
121 |
-
|
122 |
-
# Load Style Model
|
123 |
-
stylemodelloader = StyleModelLoader()
|
124 |
-
STYLE_MODEL = stylemodelloader.load_style_model(
|
125 |
-
style_model_name="flux1-redux-dev.safetensors"
|
126 |
-
)
|
127 |
-
|
128 |
-
# Initialize samplers
|
129 |
-
ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]()
|
130 |
-
SAMPLER = ksamplerselect.get_sampler(sampler_name="euler")
|
131 |
-
|
132 |
-
# Initialize depth model
|
133 |
-
cr_clip_input_switch = NODE_CLASS_MAPPINGS["CR Clip Input Switch"]()
|
134 |
-
downloadandloaddepthanythingv2model = NODE_CLASS_MAPPINGS["DownloadAndLoadDepthAnythingV2Model"]()
|
135 |
-
DEPTH_MODEL = downloadandloaddepthanythingv2model.loadmodel(
|
136 |
-
model="depth_anything_v2_vitl_fp32.safetensors"
|
137 |
-
)
|
138 |
-
|
139 |
-
cliptextencode = CLIPTextEncode()
|
140 |
-
loadimage = LoadImage()
|
141 |
-
vaeencode = VAEEncode()
|
142 |
-
fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]()
|
143 |
-
instructpixtopixconditioning = NODE_CLASS_MAPPINGS["InstructPixToPixConditioning"]()
|
144 |
-
clipvisionencode = CLIPVisionEncode()
|
145 |
-
stylemodelapplyadvanced = NODE_CLASS_MAPPINGS["StyleModelApplyAdvanced"]()
|
146 |
-
emptylatentimage = EmptyLatentImage()
|
147 |
-
basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]()
|
148 |
-
basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]()
|
149 |
-
randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]()
|
150 |
-
samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]()
|
151 |
-
vaedecode = VAEDecode()
|
152 |
-
cr_text = NODE_CLASS_MAPPINGS["CR Text"]()
|
153 |
-
saveimage = SaveImage()
|
154 |
-
getimagesizeandcount = NODE_CLASS_MAPPINGS["GetImageSizeAndCount"]()
|
155 |
-
depthanything_v2 = NODE_CLASS_MAPPINGS["DepthAnything_V2"]()
|
156 |
-
imageresize = NODE_CLASS_MAPPINGS["ImageResize+"]()
|
157 |
-
|
158 |
-
model_loaders = [CLIP_MODEL, VAE_MODEL, UNET_MODEL, CLIP_VISION_MODEL]
|
159 |
-
|
160 |
-
model_management.load_models_gpu([
|
161 |
-
loader[0].patcher if hasattr(loader[0], 'patcher') else loader[0] for loader in model_loaders
|
162 |
-
])
|
163 |
-
|
164 |
-
@spaces.GPU
|
165 |
-
def generate_image(prompt, structure_image, style_image, depth_strength=15, style_strength=0.5, progress=gr.Progress(track_tqdm=True)) -> str:
|
166 |
-
"""Main generation function that processes inputs and returns the path to the generated image."""
|
167 |
-
with torch.inference_mode():
|
168 |
-
# Set up CLIP
|
169 |
-
clip_switch = cr_clip_input_switch.switch(
|
170 |
-
Input=1,
|
171 |
-
clip1=get_value_at_index(CLIP_MODEL, 0),
|
172 |
-
clip2=get_value_at_index(CLIP_MODEL, 0),
|
173 |
-
)
|
174 |
-
|
175 |
-
# Encode text
|
176 |
-
text_encoded = cliptextencode.encode(
|
177 |
-
text=prompt,
|
178 |
-
clip=get_value_at_index(clip_switch, 0),
|
179 |
-
)
|
180 |
-
empty_text = cliptextencode.encode(
|
181 |
-
text="",
|
182 |
-
clip=get_value_at_index(clip_switch, 0),
|
183 |
-
)
|
184 |
-
|
185 |
-
# Process structure image
|
186 |
-
structure_img = loadimage.load_image(image=structure_image)
|
187 |
-
|
188 |
-
# Resize image
|
189 |
-
resized_img = imageresize.execute(
|
190 |
-
width=get_value_at_index(CONST_1024, 0),
|
191 |
-
height=get_value_at_index(CONST_1024, 0),
|
192 |
-
interpolation="bicubic",
|
193 |
-
method="keep proportion",
|
194 |
-
condition="always",
|
195 |
-
multiple_of=16,
|
196 |
-
image=get_value_at_index(structure_img, 0),
|
197 |
-
)
|
198 |
-
|
199 |
-
# Get image size
|
200 |
-
size_info = getimagesizeandcount.getsize(
|
201 |
-
image=get_value_at_index(resized_img, 0)
|
202 |
-
)
|
203 |
-
|
204 |
-
# Encode VAE
|
205 |
-
vae_encoded = vaeencode.encode(
|
206 |
-
pixels=get_value_at_index(size_info, 0),
|
207 |
-
vae=get_value_at_index(VAE_MODEL, 0),
|
208 |
-
)
|
209 |
-
|
210 |
-
# Process depth
|
211 |
-
depth_processed = depthanything_v2.process(
|
212 |
-
da_model=get_value_at_index(DEPTH_MODEL, 0),
|
213 |
-
images=get_value_at_index(size_info, 0),
|
214 |
-
)
|
215 |
-
|
216 |
-
# Apply Flux guidance
|
217 |
-
flux_guided = fluxguidance.append(
|
218 |
-
guidance=depth_strength,
|
219 |
-
conditioning=get_value_at_index(text_encoded, 0),
|
220 |
-
)
|
221 |
-
|
222 |
-
# Process style image
|
223 |
-
style_img = loadimage.load_image(image=style_image)
|
224 |
-
|
225 |
-
# Encode style with CLIP Vision
|
226 |
-
style_encoded = clipvisionencode.encode(
|
227 |
-
crop="center",
|
228 |
-
clip_vision=get_value_at_index(CLIP_VISION_MODEL, 0),
|
229 |
-
image=get_value_at_index(style_img, 0),
|
230 |
-
)
|
231 |
-
|
232 |
-
# Set up conditioning
|
233 |
-
conditioning = instructpixtopixconditioning.encode(
|
234 |
-
positive=get_value_at_index(flux_guided, 0),
|
235 |
-
negative=get_value_at_index(empty_text, 0),
|
236 |
-
vae=get_value_at_index(VAE_MODEL, 0),
|
237 |
-
pixels=get_value_at_index(depth_processed, 0),
|
238 |
-
)
|
239 |
-
|
240 |
-
# Apply style
|
241 |
-
style_applied = stylemodelapplyadvanced.apply_stylemodel(
|
242 |
-
strength=style_strength,
|
243 |
-
conditioning=get_value_at_index(conditioning, 0),
|
244 |
-
style_model=get_value_at_index(STYLE_MODEL, 0),
|
245 |
-
clip_vision_output=get_value_at_index(style_encoded, 0),
|
246 |
-
)
|
247 |
-
|
248 |
-
# Set up empty latent
|
249 |
-
empty_latent = emptylatentimage.generate(
|
250 |
-
width=get_value_at_index(resized_img, 1),
|
251 |
-
height=get_value_at_index(resized_img, 2),
|
252 |
-
batch_size=1,
|
253 |
-
)
|
254 |
-
|
255 |
-
# Set up guidance
|
256 |
-
guided = basicguider.get_guider(
|
257 |
-
model=get_value_at_index(UNET_MODEL, 0),
|
258 |
-
conditioning=get_value_at_index(style_applied, 0),
|
259 |
-
)
|
260 |
-
|
261 |
-
# Set up scheduler
|
262 |
-
schedule = basicscheduler.get_sigmas(
|
263 |
-
scheduler="simple",
|
264 |
-
steps=28,
|
265 |
-
denoise=1,
|
266 |
-
model=get_value_at_index(UNET_MODEL, 0),
|
267 |
-
)
|
268 |
-
|
269 |
-
# Generate random noise
|
270 |
-
noise = randomnoise.get_noise(noise_seed=random.randint(1, 2**64))
|
271 |
-
|
272 |
-
# Sample
|
273 |
-
sampled = samplercustomadvanced.sample(
|
274 |
-
noise=get_value_at_index(noise, 0),
|
275 |
-
guider=get_value_at_index(guided, 0),
|
276 |
-
sampler=get_value_at_index(SAMPLER, 0),
|
277 |
-
sigmas=get_value_at_index(schedule, 0),
|
278 |
-
latent_image=get_value_at_index(empty_latent, 0),
|
279 |
-
)
|
280 |
-
|
281 |
-
# Decode VAE
|
282 |
-
decoded = vaedecode.decode(
|
283 |
-
samples=get_value_at_index(sampled, 0),
|
284 |
-
vae=get_value_at_index(VAE_MODEL, 0),
|
285 |
-
)
|
286 |
-
|
287 |
-
# Save image
|
288 |
-
prefix = cr_text.text_multiline(text="Flux_BFL_Depth_Redux")
|
289 |
-
|
290 |
-
saved = saveimage.save_images(
|
291 |
-
filename_prefix=get_value_at_index(prefix, 0),
|
292 |
-
images=get_value_at_index(decoded, 0),
|
293 |
-
)
|
294 |
-
saved_path = f"output/{saved['ui']['images'][0]['filename']}"
|
295 |
-
return saved_path
|
296 |
-
|
297 |
-
# Create Gradio interface
|
298 |
-
|
299 |
-
examples = [
|
300 |
-
["", "mona.png", "receita-tacos.webp", 15, 0.6],
|
301 |
-
["a woman looking at a house catching fire on the background", "disaster_girl.png", "abaporu.jpg", 15, 0.15],
|
302 |
-
["istanbul aerial, dramatic photography", "natasha.png", "istambul.jpg", 15, 0.5],
|
303 |
-
]
|
304 |
-
|
305 |
-
app = gr.Interface(
|
306 |
-
fn=generate_image,
|
307 |
-
inputs=[
|
308 |
-
gr.Textbox(label="Prompt", placeholder="Enter your prompt here..."),
|
309 |
-
gr.Image(label="Structure Image", type="filepath"),
|
310 |
-
gr.Image(label="Style Image", type="filepath"),
|
311 |
-
gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength"),
|
312 |
-
gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength"),
|
313 |
-
],
|
314 |
-
outputs=gr.Image(label="Generated Image"),
|
315 |
-
title="FLUX Style Shaping",
|
316 |
-
description="""Flux[dev] Redux + Flux[dev] Depth ComfyUI workflow by [Nathan Shipley](https://x.com/CitizenPlain) running directly on Gradio.
|
317 |
-
[workflow](https://gist.github.com/nathanshipley/7a9ac1901adde76feebe58d558026f68) – [how to convert your any comfy workflow to gradio](https://huggingface.co/blog/run-comfyui-workflows-on-spaces)
|
318 |
-
""",
|
319 |
-
examples=examples,
|
320 |
-
cache_examples=True,
|
321 |
-
cache_mode="lazy"
|
322 |
-
)
|
323 |
-
|
324 |
-
if __name__ == "__main__":
|
325 |
-
app.launch() # Aqui você pode usar ssr=True se desejar
|
326 |
-
|
327 |
|
328 |
if __name__ == "__main__":
|
329 |
-
app.launch(
|
|
|
1 |
+
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
import requests
|
4 |
from PIL import Image
|
5 |
+
import tempfile
|
6 |
+
|
7 |
+
def call_api(prompt, structure_image, style_image, depth_strength, style_strength):
|
8 |
+
with tempfile.NamedTemporaryFile(suffix=".png") as structure_tmp, tempfile.NamedTemporaryFile(suffix=".png") as style_tmp:
|
9 |
+
structure_image.save(structure_tmp.name)
|
10 |
+
style_image.save(style_tmp.name)
|
11 |
+
|
12 |
+
files = {
|
13 |
+
'structure_image': open(structure_tmp.name, 'rb'),
|
14 |
+
'style_image': open(style_tmp.name, 'rb'),
|
15 |
+
}
|
16 |
+
data = {
|
17 |
+
'prompt': prompt,
|
18 |
+
'depth_strength': depth_strength,
|
19 |
+
'style_strength': style_strength,
|
20 |
+
}
|
21 |
+
response = requests.post("http://localhost:7860", data=data, files=files)
|
22 |
+
return Image.open(response.raw)
|
23 |
+
|
24 |
+
with gr.Blocks() as app:
|
25 |
+
gr.Markdown("# FLUX Style Shaping")
|
26 |
+
gr.Markdown("Interface conectada à API para geração de imagem com estilo e estrutura.")
|
27 |
+
|
28 |
+
with gr.Row():
|
29 |
+
with gr.Column():
|
30 |
+
prompt_input = gr.Textbox(label="Prompt", placeholder="Enter your prompt here...")
|
31 |
+
with gr.Row():
|
32 |
+
with gr.Group():
|
33 |
+
structure_image = gr.Image(label="Structure Image")
|
34 |
+
depth_strength = gr.Slider(minimum=0, maximum=50, value=15, label="Depth Strength")
|
35 |
+
with gr.Group():
|
36 |
+
style_image = gr.Image(label="Style Image")
|
37 |
+
style_strength = gr.Slider(minimum=0, maximum=1, value=0.5, label="Style Strength")
|
38 |
+
generate_btn = gr.Button("Generate")
|
39 |
+
output_image = gr.Image(label="Generated Image")
|
40 |
+
|
41 |
+
with gr.Column():
|
42 |
+
output_image.render()
|
43 |
+
|
44 |
+
generate_btn.click(
|
45 |
+
fn=call_api,
|
46 |
+
inputs=[prompt_input, structure_image, style_image, depth_strength, style_strength],
|
47 |
+
outputs=[output_image]
|
48 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
if __name__ == "__main__":
|
51 |
+
app.launch(show_api=False)
|