pmhanh commited on
Commit
a288221
·
1 Parent(s): 234b704

Update app.py

Browse files
Files changed (2) hide show
  1. app.py +46 -35
  2. requirements.txt +5 -5
app.py CHANGED
@@ -7,7 +7,7 @@ import json
7
  from torch import nn
8
  from huggingface_hub import hf_hub_download
9
 
10
- # Định nghĩa mô hình (giống lúc train)
11
  class VQAModel(nn.Module):
12
  def __init__(self, num_answers):
13
  super(VQAModel, self).__init__()
@@ -29,48 +29,59 @@ class VQAModel(nn.Module):
29
  repo_id = "duyan2803/vqa-model-vit-bert"
30
  device = "cuda" if torch.cuda.is_available() else "cpu"
31
 
32
- # Load config
33
- config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
34
- with open(config_path, "r") as f:
35
- config = json.load(f)
36
- num_answers = config["num_answers"]
 
37
 
38
- # Load weights
39
- weights_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin")
40
- model = VQAModel(num_answers=num_answers)
41
- model.load_state_dict(torch.load(weights_path, map_location=device, weights_only=True))
42
- model.to(device)
43
- model.eval()
 
 
44
 
45
- # Load tokenizer
46
- tokenizer = BertTokenizer.from_pretrained(repo_id)
 
47
 
48
- # Load answer list
49
- answer_list_path = hf_hub_download(repo_id=repo_id, filename="answer_list.json")
50
- with open(answer_list_path, "r") as f:
51
- answer_list = json.load(f)
 
 
 
 
52
 
53
  # Hàm dự đoán
54
  def predict(image, question):
55
- # Xử lý ảnh
56
- transform = transforms.Compose([
57
- transforms.Resize((224, 224)),
58
- transforms.ToTensor(),
59
- transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
60
- ])
61
- image_tensor = transform(image).unsqueeze(0).to(device)
 
62
 
63
- # Xử lý câu hỏi
64
- tokenized = tokenizer(question, padding='max_length', truncation=True, max_length=32, return_tensors='pt')
65
- input_ids = tokenized['input_ids'].to(device)
66
- attention_mask = tokenized['attention_mask'].to(device)
67
 
68
- # Dự đoán
69
- with torch.no_grad():
70
- output = model(image_tensor, input_ids, attention_mask)
71
- pred_idx = output.argmax(dim=1).item()
72
-
73
- return answer_list[pred_idx]
 
 
74
 
75
  # Giao diện Gradio
76
  interface = gr.Interface(
 
7
  from torch import nn
8
  from huggingface_hub import hf_hub_download
9
 
10
+ # Định nghĩa mô hình
11
  class VQAModel(nn.Module):
12
  def __init__(self, num_answers):
13
  super(VQAModel, self).__init__()
 
29
  repo_id = "duyan2803/vqa-model-vit-bert"
30
  device = "cuda" if torch.cuda.is_available() else "cpu"
31
 
32
+ try:
33
+ # Load config
34
+ config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
35
+ with open(config_path, "r") as f:
36
+ config = json.load(f)
37
+ num_answers = config["num_answers"]
38
 
39
+ # Load weights
40
+ weights_path = hf_hub_download(repo_id=repo_id, filename="pytorch_model.bin")
41
+ model = VQAModel(num_answers=num_answers)
42
+ state_dict = torch.load(weights_path, map_location=device, weights_only=True)
43
+ model.load_state_dict(state_dict)
44
+ model.to(device)
45
+ model.eval()
46
+ print("Đã load mô hình thành công!")
47
 
48
+ # Load tokenizer
49
+ tokenizer = BertTokenizer.from_pretrained(repo_id)
50
+ print("Đã load tokenizer thành công!")
51
 
52
+ # Load answer list
53
+ answer_list_path = hf_hub_download(repo_id=repo_id, filename="answer_list.json")
54
+ with open(answer_list_path, "r") as f:
55
+ answer_list = json.load(f)
56
+ print("Đã load answer list thành công!")
57
+ except Exception as e:
58
+ print(f"Lỗi khi load mô hình hoặc file: {str(e)}")
59
+ raise e
60
 
61
  # Hàm dự đoán
62
  def predict(image, question):
63
+ try:
64
+ # Xử lý ảnh
65
+ transform = transforms.Compose([
66
+ transforms.Resize((224, 224)),
67
+ transforms.ToTensor(),
68
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
69
+ ])
70
+ image_tensor = transform(image).unsqueeze(0).to(device)
71
 
72
+ # Xử lý câu hỏi
73
+ tokenized = tokenizer(question, padding='max_length', truncation=True, max_length=32, return_tensors='pt')
74
+ input_ids = tokenized['input_ids'].to(device)
75
+ attention_mask = tokenized['attention_mask'].to(device)
76
 
77
+ # Dự đoán
78
+ with torch.no_grad():
79
+ output = model(image_tensor, input_ids, attention_mask)
80
+ pred_idx = output.argmax(dim=1).item()
81
+
82
+ return answer_list[pred_idx]
83
+ except Exception as e:
84
+ return f"Lỗi khi dự đoán: {str(e)}"
85
 
86
  # Giao diện Gradio
87
  interface = gr.Interface(
requirements.txt CHANGED
@@ -1,6 +1,6 @@
1
- torch
2
- transformers
3
- torchvision
4
  pillow
5
- gradio
6
- huggingface_hub
 
1
+ torch==2.0.1
2
+ transformers>=4.32.0
3
+ torchvision==0.15.2
4
  pillow
5
+ gradio==4.0.2
6
+ huggingface_hub>=0.29.0