Spaces:
Runtime error
Runtime error
from dataclasses import dataclass | |
import torch | |
import torch.nn as nn | |
import torchtune | |
from torchtune.models import llama3_2 | |
def llama3_2_1B() -> torchtune.modules.transformer.TransformerDecoder: | |
return llama3_2.llama3_2( | |
vocab_size=128_256, | |
num_layers=16, | |
num_heads=32, | |
num_kv_heads=8, | |
embed_dim=2048, | |
max_seq_len=2048, | |
intermediate_dim=8192, | |
attn_dropout=0.0, | |
norm_eps=1e-5, | |
rope_base=500_000, | |
scale_factor=32, | |
) | |
def llama3_2_100M() -> torchtune.modules.transformer.TransformerDecoder: | |
return llama3_2.llama3_2( | |
vocab_size=128_256, | |
num_layers=4, | |
num_heads=8, | |
num_kv_heads=2, | |
embed_dim=1024, | |
max_seq_len=2048, | |
intermediate_dim=8192, | |
attn_dropout=0.0, | |
norm_eps=1e-5, | |
rope_base=500_000, | |
scale_factor=32, | |
) | |
FLAVORS = { | |
"llama-1B": llama3_2_1B, | |
"llama-100M": llama3_2_100M, | |
} | |
def _prepare_transformer(model): | |
embed_dim = model.tok_embeddings.embedding_dim | |
model.tok_embeddings = nn.Identity() | |
model.output = nn.Identity() | |
return model, embed_dim | |
def _create_causal_mask(seq_len: int, device: torch.device): | |
return torch.tril(torch.ones(seq_len, seq_len, dtype=torch.bool, device=device)) | |
def _index_causal_mask(mask: torch.Tensor, input_pos: torch.Tensor): | |
""" | |
Args: | |
mask: (max_seq_len, max_seq_len) | |
input_pos: (batch_size, seq_len) | |
Returns: | |
(batch_size, seq_len, max_seq_len) | |
""" | |
r = mask[input_pos, :] | |
return r | |
def _multinomial_sample_one_no_sync(probs): # Does multinomial sampling without a cuda synchronization | |
q = torch.empty_like(probs).exponential_(1) | |
return torch.argmax(probs / q, dim=-1, keepdim=True).to(dtype=torch.int) | |
def sample_topk(logits: torch.Tensor, topk: int, temperature: float): | |
logits = logits / temperature | |
filter_value: float = -float("Inf") | |
indices_to_remove = logits < torch.topk(logits, topk)[0][..., -1, None] | |
scores_processed = logits.masked_fill(indices_to_remove, filter_value) | |
scores_processed = torch.nn.functional.log_softmax(scores_processed, dim=-1) | |
probs = torch.nn.functional.softmax(scores_processed, dim=-1) | |
sample_token = _multinomial_sample_one_no_sync(probs) | |
return sample_token | |
class ModelArgs: | |
backbone_flavor: str | |
decoder_flavor: str | |
text_vocab_size: int | |
audio_vocab_size: int | |
audio_num_codebooks: int | |
class Model(nn.Module): | |
def __init__(self, args: ModelArgs): | |
super().__init__() | |
self.args = args | |
self.backbone, backbone_dim = _prepare_transformer(FLAVORS[args.backbone_flavor]()) | |
self.decoder, decoder_dim = _prepare_transformer(FLAVORS[args.decoder_flavor]()) | |
self.text_embeddings = nn.Embedding(args.text_vocab_size, backbone_dim) | |
self.audio_embeddings = nn.Embedding(args.audio_vocab_size * args.audio_num_codebooks, backbone_dim) | |
self.projection = nn.Linear(backbone_dim, decoder_dim, bias=False) | |
self.codebook0_head = nn.Linear(backbone_dim, args.audio_vocab_size, bias=False) | |
self.audio_head = nn.Parameter(torch.empty(args.audio_num_codebooks - 1, decoder_dim, args.audio_vocab_size)) | |
def setup_caches(self, max_batch_size: int) -> torch.Tensor: | |
"""Setup KV caches and return a causal mask.""" | |
dtype = next(self.parameters()).dtype | |
device = next(self.parameters()).device | |
with device: | |
self.backbone.setup_caches(max_batch_size, dtype) | |
self.decoder.setup_caches(max_batch_size, dtype, decoder_max_seq_len=self.args.audio_num_codebooks) | |
self.register_buffer("backbone_causal_mask", _create_causal_mask(self.backbone.max_seq_len, device)) | |
self.register_buffer("decoder_causal_mask", _create_causal_mask(self.args.audio_num_codebooks, device)) | |
def generate_frame( | |
self, | |
tokens: torch.Tensor, | |
tokens_mask: torch.Tensor, | |
input_pos: torch.Tensor, | |
temperature: float, | |
topk: int, | |
) -> torch.Tensor: | |
""" | |
Args: | |
tokens: (batch_size, seq_len, audio_num_codebooks+1) | |
tokens_mask: (batch_size, seq_len, audio_num_codebooks+1) | |
input_pos: (batch_size, seq_len) positions for each token | |
mask: (batch_size, seq_len, max_seq_len | |
Returns: | |
(batch_size, audio_num_codebooks) sampled tokens | |
""" | |
dtype = next(self.parameters()).dtype | |
b, s, _ = tokens.size() | |
assert self.backbone.caches_are_enabled(), "backbone caches are not enabled" | |
curr_backbone_mask = _index_causal_mask(self.backbone_causal_mask, input_pos) | |
embeds = self._embed_tokens(tokens) | |
masked_embeds = embeds * tokens_mask.unsqueeze(-1) | |
h = masked_embeds.sum(dim=2) | |
h = self.backbone(h, input_pos=input_pos, mask=curr_backbone_mask).to(dtype=dtype) | |
last_h = h[:, -1, :] | |
c0_logits = self.codebook0_head(last_h) | |
c0_sample = sample_topk(c0_logits, topk, temperature) | |
c0_embed = self._embed_audio(0, c0_sample) | |
curr_h = torch.cat([last_h.unsqueeze(1), c0_embed], dim=1) | |
curr_sample = c0_sample.clone() | |
curr_pos = torch.arange(0, curr_h.size(1), device=curr_h.device).unsqueeze(0).repeat(curr_h.size(0), 1) | |
# Decoder caches must be reset every frame. | |
self.decoder.reset_caches() | |
for i in range(1, self.args.audio_num_codebooks): | |
curr_decoder_mask = _index_causal_mask(self.decoder_causal_mask, curr_pos) | |
decoder_h = self.decoder(self.projection(curr_h), input_pos=curr_pos, mask=curr_decoder_mask).to( | |
dtype=dtype | |
) | |
ci_logits = torch.mm(decoder_h[:, -1, :], self.audio_head[i - 1]) | |
ci_sample = sample_topk(ci_logits, topk, temperature) | |
ci_embed = self._embed_audio(i, ci_sample) | |
curr_h = ci_embed | |
curr_sample = torch.cat([curr_sample, ci_sample], dim=1) | |
curr_pos = curr_pos[:, -1:] + 1 | |
return curr_sample | |
def reset_caches(self): | |
self.backbone.reset_caches() | |
self.decoder.reset_caches() | |
def _embed_audio(self, codebook: int, tokens: torch.Tensor) -> torch.Tensor: | |
return self.audio_embeddings(tokens + codebook * self.args.audio_vocab_size) | |
def _embed_tokens(self, tokens: torch.Tensor) -> torch.Tensor: | |
text_embeds = self.text_embeddings(tokens[:, :, -1]).unsqueeze(-2) | |
audio_tokens = tokens[:, :, :-1] + ( | |
self.args.audio_vocab_size * torch.arange(self.args.audio_num_codebooks, device=tokens.device) | |
) | |
audio_embeds = self.audio_embeddings(audio_tokens.view(-1)).reshape( | |
tokens.size(0), tokens.size(1), self.args.audio_num_codebooks, -1 | |
) | |
return torch.cat([audio_embeds, text_embeds], dim=-2) | |