File size: 14,465 Bytes
9bc4638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e60611
 
eafda84
e64f815
eafda84
9bc4638
6e60611
 
 
 
 
 
9bc4638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import copy
import os
from datetime import datetime

import gradio as gr

os.environ["TORCH_CUDNN_SDPA_ENABLED"] = "0,1,2,3,4,5,6,7"
import tempfile

import cv2
import matplotlib.pyplot as plt
import numpy as np
import spaces
import torch

from moviepy.editor import ImageSequenceClip
from PIL import Image
from sam2.build_sam import build_sam2_video_predictor

# Description
title = "<center><strong><font size='8'>EdgeTAM<font></strong> <a href='https://github.com/facebookresearch/EdgeTAM'><font size='6'>[GitHub]</font></a> </center>"

description_p = """# Instructions
                <ol>
                <li> Upload one video or click one example video</li>
                <li> Click 'include' point type, select the object to segment and track</li>
                <li> Click 'exclude' point type (optional), select the area you want to avoid segmenting and tracking</li>
                <li> Click the 'Track' button to obtain the masked video </li>
                </ol>
              """

# examples
examples = [
    ["examples/01_dog.mp4"],
    ["examples/02_cups.mp4"],
    ["examples/03_blocks.mp4"],
    ["examples/04_coffee.mp4"],
    ["examples/05_default_juggle.mp4"],
    ["examples/01_breakdancer.mp4"],
    ["examples/02_hummingbird.mp4"],
    ["examples/03_skateboarder.mp4"],
    ["examples/04_octopus.mp4"],
    ["examples/05_landing_dog_soccer.mp4"],
    ["examples/06_pingpong.mp4"],
    ["examples/07_snowboarder.mp4"],
    ["examples/08_driving.mp4"],
    ["examples/09_birdcartoon.mp4"],
    ["examples/10_cloth_magic.mp4"],
    ["examples/11_polevault.mp4"],
    ["examples/12_hideandseek.mp4"],
    ["examples/13_butterfly.mp4"],
    ["examples/14_social_dog_training.mp4"],
    ["examples/15_cricket.mp4"],
    ["examples/16_robotarm.mp4"],
    ["examples/17_childrendancing.mp4"],
    ["examples/18_threedogs.mp4"],
    ["examples/19_cyclist.mp4"],
    ["examples/20_doughkneading.mp4"],
    ["examples/21_biker.mp4"],
    ["examples/22_dogskateboarder.mp4"],
    ["examples/23_racecar.mp4"],
    ["examples/24_clownfish.mp4"],
]

OBJ_ID = 0


sam2_checkpoint = "checkpoints/edgetam.pt"
model_cfg = "edgetam.yaml"
predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint, device="cpu")
predictor.to("cuda")
print("predictor loaded")

# use bfloat16 for the entire demo
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
    # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
    torch.backends.cuda.matmul.allow_tf32 = True
    torch.backends.cudnn.allow_tf32 = True


def get_video_fps(video_path):
    # Open the video file
    cap = cv2.VideoCapture(video_path)

    if not cap.isOpened():
        print("Error: Could not open video.")
        return None

    # Get the FPS of the video
    fps = cap.get(cv2.CAP_PROP_FPS)

    return fps


def reset(session_state):
    session_state["input_points"] = []
    session_state["input_labels"] = []
    if session_state["inference_state"] is not None:
        predictor.reset_state(session_state["inference_state"])
    session_state["first_frame"] = None
    session_state["all_frames"] = None
    session_state["inference_state"] = None
    return (
        None,
        gr.update(open=True),
        None,
        None,
        gr.update(value=None, visible=False),
        session_state,
    )


def clear_points(session_state):
    session_state["input_points"] = []
    session_state["input_labels"] = []
    if session_state["inference_state"]["tracking_has_started"]:
        predictor.reset_state(session_state["inference_state"])
    return (
        session_state["first_frame"],
        None,
        gr.update(value=None, visible=False),
        session_state,
    )


@spaces.GPU
def preprocess_video_in(video_path, session_state):
    if video_path is None:
        return (
            gr.update(open=True),  # video_in_drawer
            None,  # points_map
            None,  # output_image
            gr.update(value=None, visible=False),  # output_video
            session_state,
        )

    # Read the first frame
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        print("Error: Could not open video.")
        return (
            gr.update(open=True),  # video_in_drawer
            None,  # points_map
            None,  # output_image
            gr.update(value=None, visible=False),  # output_video
            session_state,
        )

    frame_number = 0
    first_frame = None
    all_frames = []

    while True:
        ret, frame = cap.read()
        if not ret:
            break

        frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
        frame = np.array(frame)

        # Store the first frame
        if frame_number == 0:
            first_frame = frame
        all_frames.append(frame)

        frame_number += 1

    cap.release()
    session_state["first_frame"] = copy.deepcopy(first_frame)
    session_state["all_frames"] = all_frames

    session_state["inference_state"] = predictor.init_state(video_path=video_path)
    session_state["input_points"] = []
    session_state["input_labels"] = []

    return [
        gr.update(open=False),  # video_in_drawer
        first_frame,  # points_map
        None,  # output_image
        gr.update(value=None, visible=False),  # output_video
        session_state,
    ]


@spaces.GPU
def segment_with_points(
    point_type,
    session_state,
    evt: gr.SelectData,
):
    session_state["input_points"].append(evt.index)
    print(f"TRACKING INPUT POINT: {session_state['input_points']}")

    if point_type == "include":
        session_state["input_labels"].append(1)
    elif point_type == "exclude":
        session_state["input_labels"].append(0)
    print(f"TRACKING INPUT LABEL: {session_state['input_labels']}")

    # Open the image and get its dimensions
    transparent_background = Image.fromarray(session_state["first_frame"]).convert(
        "RGBA"
    )
    w, h = transparent_background.size

    # Define the circle radius as a fraction of the smaller dimension
    fraction = 0.01  # You can adjust this value as needed
    radius = int(fraction * min(w, h))

    # Create a transparent layer to draw on
    transparent_layer = np.zeros((h, w, 4), dtype=np.uint8)

    for index, track in enumerate(session_state["input_points"]):
        if session_state["input_labels"][index] == 1:
            cv2.circle(transparent_layer, track, radius, (0, 255, 0, 255), -1)
        else:
            cv2.circle(transparent_layer, track, radius, (255, 0, 0, 255), -1)

    # Convert the transparent layer back to an image
    transparent_layer = Image.fromarray(transparent_layer, "RGBA")
    selected_point_map = Image.alpha_composite(
        transparent_background, transparent_layer
    )

    # Let's add a positive click at (x, y) = (210, 350) to get started
    points = np.array(session_state["input_points"], dtype=np.float32)
    # for labels, `1` means positive click and `0` means negative click
    labels = np.array(session_state["input_labels"], np.int32)
    _, _, out_mask_logits = predictor.add_new_points(
        inference_state=session_state["inference_state"],
        frame_idx=0,
        obj_id=OBJ_ID,
        points=points,
        labels=labels,
    )

    mask_image = show_mask((out_mask_logits[0] > 0.0).cpu().numpy())
    first_frame_output = Image.alpha_composite(transparent_background, mask_image)

    torch.cuda.empty_cache()
    return selected_point_map, first_frame_output, session_state


def show_mask(mask, obj_id=None, random_color=False, convert_to_image=True):
    if random_color:
        color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
    else:
        cmap = plt.get_cmap("tab10")
        cmap_idx = 0 if obj_id is None else obj_id
        color = np.array([*cmap(cmap_idx)[:3], 0.6])
    h, w = mask.shape[-2:]
    mask = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    mask = (mask * 255).astype(np.uint8)
    if convert_to_image:
        mask = Image.fromarray(mask, "RGBA")
    return mask


@spaces.GPU
def propagate_to_all(
    video_in,
    session_state,
):
    if (
        len(session_state["input_points"]) == 0
        or video_in is None
        or session_state["inference_state"] is None
    ):
        return (
            None,
            session_state,
        )

    # run propagation throughout the video and collect the results in a dict
    video_segments = {}  # video_segments contains the per-frame segmentation results
    print("starting propagate_in_video")
    for out_frame_idx, out_obj_ids, out_mask_logits in predictor.propagate_in_video(
        session_state["inference_state"]
    ):
        video_segments[out_frame_idx] = {
            out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
            for i, out_obj_id in enumerate(out_obj_ids)
        }

    # obtain the segmentation results every few frames
    vis_frame_stride = 1

    output_frames = []
    for out_frame_idx in range(0, len(video_segments), vis_frame_stride):
        transparent_background = Image.fromarray(
            session_state["all_frames"][out_frame_idx]
        ).convert("RGBA")
        out_mask = video_segments[out_frame_idx][OBJ_ID]
        mask_image = show_mask(out_mask)
        output_frame = Image.alpha_composite(transparent_background, mask_image)
        output_frame = np.array(output_frame)
        output_frames.append(output_frame)

    torch.cuda.empty_cache()

    # Create a video clip from the image sequence
    original_fps = get_video_fps(video_in)
    fps = original_fps  # Frames per second
    clip = ImageSequenceClip(output_frames, fps=fps)
    # Write the result to a file
    unique_id = datetime.now().strftime("%Y%m%d%H%M%S")
    final_vid_output_path = f"output_video_{unique_id}.mp4"
    final_vid_output_path = os.path.join(tempfile.gettempdir(), final_vid_output_path)

    # Write the result to a file
    clip.write_videofile(final_vid_output_path, codec="libx264")

    return (
        gr.update(value=final_vid_output_path),
        session_state,
    )


def update_ui():
    return gr.update(visible=True)


with gr.Blocks() as demo:
    session_state = gr.State(
        {
            "first_frame": None,
            "all_frames": None,
            "input_points": [],
            "input_labels": [],
            "inference_state": None,
        }
    )

    with gr.Column():
        # Title
        gr.Markdown(title)
        with gr.Row():

            with gr.Column():
                # Instructions
                gr.Markdown(description_p)

                with gr.Accordion("Input Video", open=True) as video_in_drawer:
                    video_in = gr.Video(label="Input Video", format="mp4")

                with gr.Row():
                    point_type = gr.Radio(
                        label="point type",
                        choices=["include", "exclude"],
                        value="include",
                        scale=2,
                    )
                    propagate_btn = gr.Button("Track", scale=1, variant="primary")
                    clear_points_btn = gr.Button("Clear Points", scale=1)
                    reset_btn = gr.Button("Reset", scale=1)

                points_map = gr.Image(
                    label="Frame with Point Prompt", type="numpy", interactive=False
                )

            with gr.Column():
                gr.Markdown("# Try some of the examples below ⬇️")
                gr.Examples(
                    examples=examples,
                    inputs=[
                        video_in,
                    ],
                    examples_per_page=8,
                )
                gr.Markdown("\n\n\n\n\n\n\n\n\n\n\n")
                gr.Markdown("\n\n\n\n\n\n\n\n\n\n\n")
                gr.Markdown("\n\n\n\n\n\n\n\n\n\n\n")
                output_image = gr.Image(label="Reference Mask")

                output_video = gr.Video(visible=False)

    # When new video is uploaded
    video_in.upload(
        fn=preprocess_video_in,
        inputs=[
            video_in,
            session_state,
        ],
        outputs=[
            video_in_drawer,  # Accordion to hide uploaded video player
            points_map,  # Image component where we add new tracking points
            output_image,
            output_video,
            session_state,
        ],
        queue=False,
    )

    video_in.change(
        fn=preprocess_video_in,
        inputs=[
            video_in,
            session_state,
        ],
        outputs=[
            video_in_drawer,  # Accordion to hide uploaded video player
            points_map,  # Image component where we add new tracking points
            output_image,
            output_video,
            session_state,
        ],
        queue=False,
    )

    # triggered when we click on image to add new points
    points_map.select(
        fn=segment_with_points,
        inputs=[
            point_type,  # "include" or "exclude"
            session_state,
        ],
        outputs=[
            points_map,  # updated image with points
            output_image,
            session_state,
        ],
        queue=False,
    )

    # Clear every points clicked and added to the map
    clear_points_btn.click(
        fn=clear_points,
        inputs=session_state,
        outputs=[
            points_map,
            output_image,
            output_video,
            session_state,
        ],
        queue=False,
    )

    reset_btn.click(
        fn=reset,
        inputs=session_state,
        outputs=[
            video_in,
            video_in_drawer,
            points_map,
            output_image,
            output_video,
            session_state,
        ],
        queue=False,
    )

    propagate_btn.click(
        fn=update_ui,
        inputs=[],
        outputs=output_video,
        queue=False,
    ).then(
        fn=propagate_to_all,
        inputs=[
            video_in,
            session_state,
        ],
        outputs=[
            output_video,
            session_state,
        ],
        concurrency_limit=10,
        queue=False,
    )


demo.queue()
demo.launch()