File size: 14,984 Bytes
8d7c42a e8227e4 8d7c42a e8227e4 8d7c42a e8227e4 8d7c42a e8227e4 8d7c42a e8227e4 8d7c42a e8227e4 8d7c42a e8227e4 8d7c42a e8227e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import os
import glob
import time
import threading
import argparse
from typing import List, Optional
import numpy as np
import torch
from tqdm.auto import tqdm
import viser
import viser.transforms as viser_tf
import cv2
try:
import onnxruntime
except ImportError:
print("onnxruntime not found. Sky segmentation may not work.")
from visual_util import segment_sky, download_file_from_url
from vggt.models.vggt import VGGT
from vggt.utils.load_fn import load_and_preprocess_images
from vggt.utils.geometry import closed_form_inverse_se3, unproject_depth_map_to_point_map
from vggt.utils.pose_enc import pose_encoding_to_extri_intri
def viser_wrapper(
pred_dict: dict,
port: int = 8080,
init_conf_threshold: float = 50.0, # represents percentage (e.g., 50 means filter lowest 50%)
use_point_map: bool = False,
background_mode: bool = False,
mask_sky: bool = False,
image_folder: str = None,
):
"""
Visualize predicted 3D points and camera poses with viser.
Args:
pred_dict (dict):
{
"images": (S, 3, H, W) - Input images,
"world_points": (S, H, W, 3),
"world_points_conf": (S, H, W),
"depth": (S, H, W, 1),
"depth_conf": (S, H, W),
"extrinsic": (S, 3, 4),
"intrinsic": (S, 3, 3),
}
port (int): Port number for the viser server.
init_conf_threshold (float): Initial percentage of low-confidence points to filter out.
use_point_map (bool): Whether to visualize world_points or use depth-based points.
background_mode (bool): Whether to run the server in background thread.
mask_sky (bool): Whether to apply sky segmentation to filter out sky points.
image_folder (str): Path to the folder containing input images.
"""
print(f"Starting viser server on port {port}")
server = viser.ViserServer(host="0.0.0.0", port=port)
server.gui.configure_theme(titlebar_content=None, control_layout="collapsible")
# Unpack prediction dict
images = pred_dict["images"] # (S, 3, H, W)
world_points_map = pred_dict["world_points"] # (S, H, W, 3)
conf_map = pred_dict["world_points_conf"] # (S, H, W)
depth_map = pred_dict["depth"] # (S, H, W, 1)
depth_conf = pred_dict["depth_conf"] # (S, H, W)
extrinsics_cam = pred_dict["extrinsic"] # (S, 3, 4)
intrinsics_cam = pred_dict["intrinsic"] # (S, 3, 3)
# Compute world points from depth if not using the precomputed point map
if not use_point_map:
world_points = unproject_depth_map_to_point_map(depth_map, extrinsics_cam, intrinsics_cam)
conf = depth_conf
else:
world_points = world_points_map
conf = conf_map
# Apply sky segmentation if enabled
if mask_sky and image_folder is not None:
conf = apply_sky_segmentation(conf, image_folder)
# Convert images from (S, 3, H, W) to (S, H, W, 3)
# Then flatten everything for the point cloud
colors = images.transpose(0, 2, 3, 1) # now (S, H, W, 3)
S, H, W, _ = world_points.shape
# Flatten
points = world_points.reshape(-1, 3)
colors_flat = (colors.reshape(-1, 3) * 255).astype(np.uint8)
conf_flat = conf.reshape(-1)
cam_to_world_mat = closed_form_inverse_se3(extrinsics_cam) # shape (S, 4, 4) typically
# For convenience, we store only (3,4) portion
cam_to_world = cam_to_world_mat[:, :3, :]
# Compute scene center and recenter
scene_center = np.mean(points, axis=0)
points_centered = points - scene_center
cam_to_world[..., -1] -= scene_center
# Store frame indices so we can filter by frame
frame_indices = np.repeat(np.arange(S), H * W)
# Build the viser GUI
gui_show_frames = server.gui.add_checkbox(
"Show Cameras",
initial_value=True,
)
# Now the slider represents percentage of points to filter out
gui_points_conf = server.gui.add_slider(
"Confidence Percent",
min=0,
max=100,
step=0.1,
initial_value=init_conf_threshold,
)
gui_frame_selector = server.gui.add_dropdown(
"Show Points from Frames",
options=["All"] + [str(i) for i in range(S)],
initial_value="All",
)
# Create the main point cloud handle
# Compute the threshold value as the given percentile
init_threshold_val = np.percentile(conf_flat, init_conf_threshold)
init_conf_mask = (conf_flat >= init_threshold_val) & (conf_flat > 0.1)
point_cloud = server.scene.add_point_cloud(
name="viser_pcd",
points=points_centered[init_conf_mask],
colors=colors_flat[init_conf_mask],
point_size=0.001,
point_shape="circle",
)
# We will store references to frames & frustums so we can toggle visibility
frames: List[viser.FrameHandle] = []
frustums: List[viser.CameraFrustumHandle] = []
def visualize_frames(extrinsics: np.ndarray, images_: np.ndarray) -> None:
"""
Add camera frames and frustums to the scene.
extrinsics: (S, 3, 4)
images_: (S, 3, H, W)
"""
# Clear any existing frames or frustums
for f in frames:
f.remove()
frames.clear()
for fr in frustums:
fr.remove()
frustums.clear()
# Optionally attach a callback that sets the viewpoint to the chosen camera
def attach_callback(frustum: viser.CameraFrustumHandle, frame: viser.FrameHandle) -> None:
@frustum.on_click
def _(_) -> None:
for client in server.get_clients().values():
client.camera.wxyz = frame.wxyz
client.camera.position = frame.position
img_ids = range(S)
for img_id in tqdm(img_ids):
cam2world_3x4 = extrinsics[img_id]
T_world_camera = viser_tf.SE3.from_matrix(cam2world_3x4)
# Add a small frame axis
frame_axis = server.scene.add_frame(
f"frame_{img_id}",
wxyz=T_world_camera.rotation().wxyz,
position=T_world_camera.translation(),
axes_length=0.05,
axes_radius=0.002,
origin_radius=0.002,
)
frames.append(frame_axis)
# Convert the image for the frustum
img = images_[img_id] # shape (3, H, W)
img = (img.transpose(1, 2, 0) * 255).astype(np.uint8)
h, w = img.shape[:2]
# If you want correct FOV from intrinsics, do something like:
# fx = intrinsics_cam[img_id, 0, 0]
# fov = 2 * np.arctan2(h/2, fx)
# For demonstration, we pick a simple approximate FOV:
fy = 1.1 * h
fov = 2 * np.arctan2(h / 2, fy)
# Add the frustum
frustum_cam = server.scene.add_camera_frustum(
f"frame_{img_id}/frustum",
fov=fov,
aspect=w / h,
scale=0.05,
image=img,
line_width=1.0,
)
frustums.append(frustum_cam)
attach_callback(frustum_cam, frame_axis)
def update_point_cloud() -> None:
"""Update the point cloud based on current GUI selections."""
# Here we compute the threshold value based on the current percentage
current_percentage = gui_points_conf.value
threshold_val = np.percentile(conf_flat, current_percentage)
print(f"Threshold absolute value: {threshold_val}, percentage: {current_percentage}%")
conf_mask = (conf_flat >= threshold_val) & (conf_flat > 1e-5)
if gui_frame_selector.value == "All":
frame_mask = np.ones_like(conf_mask, dtype=bool)
else:
selected_idx = int(gui_frame_selector.value)
frame_mask = frame_indices == selected_idx
combined_mask = conf_mask & frame_mask
point_cloud.points = points_centered[combined_mask]
point_cloud.colors = colors_flat[combined_mask]
@gui_points_conf.on_update
def _(_) -> None:
update_point_cloud()
@gui_frame_selector.on_update
def _(_) -> None:
update_point_cloud()
@gui_show_frames.on_update
def _(_) -> None:
"""Toggle visibility of camera frames and frustums."""
for f in frames:
f.visible = gui_show_frames.value
for fr in frustums:
fr.visible = gui_show_frames.value
# Add the camera frames to the scene
visualize_frames(cam_to_world, images)
print("Starting viser server...")
# If background_mode is True, spawn a daemon thread so the main thread can continue.
if background_mode:
def server_loop():
while True:
time.sleep(0.001)
thread = threading.Thread(target=server_loop, daemon=True)
thread.start()
else:
while True:
time.sleep(0.01)
return server
# Helper functions for sky segmentation
def apply_sky_segmentation(conf: np.ndarray, image_folder: str) -> np.ndarray:
"""
Apply sky segmentation to confidence scores.
Args:
conf (np.ndarray): Confidence scores with shape (S, H, W)
image_folder (str): Path to the folder containing input images
Returns:
np.ndarray: Updated confidence scores with sky regions masked out
"""
S, H, W = conf.shape
sky_masks_dir = image_folder.rstrip('/') + "_sky_masks"
os.makedirs(sky_masks_dir, exist_ok=True)
# Download skyseg.onnx if it doesn't exist
if not os.path.exists("skyseg.onnx"):
print("Downloading skyseg.onnx...")
download_file_from_url(
"https://huggingface.co/JianyuanWang/skyseg/resolve/main/skyseg.onnx", "skyseg.onnx"
)
skyseg_session = onnxruntime.InferenceSession("skyseg.onnx")
image_files = sorted(glob.glob(os.path.join(image_folder, "*")))
sky_mask_list = []
print("Generating sky masks...")
for i, image_path in enumerate(tqdm(image_files[:S])): # Limit to the number of images in the batch
image_name = os.path.basename(image_path)
mask_filepath = os.path.join(sky_masks_dir, image_name)
if os.path.exists(mask_filepath):
sky_mask = cv2.imread(mask_filepath, cv2.IMREAD_GRAYSCALE)
else:
sky_mask = segment_sky(image_path, skyseg_session, mask_filepath)
# Resize mask to match H×W if needed
if sky_mask.shape[0] != H or sky_mask.shape[1] != W:
sky_mask = cv2.resize(sky_mask, (W, H))
sky_mask_list.append(sky_mask)
# Convert list to numpy array with shape S×H×W
sky_mask_array = np.array(sky_mask_list)
# Apply sky mask to confidence scores
sky_mask_binary = (sky_mask_array > 0.1).astype(np.float32)
conf = conf * sky_mask_binary
print("Sky segmentation applied successfully")
return conf
parser = argparse.ArgumentParser(description="VGGT demo with viser for 3D visualization")
parser.add_argument(
"--image_folder", type=str, default="examples/kitchen/images/", help="Path to folder containing images"
)
parser.add_argument("--use_point_map", action="store_true", help="Use point map instead of depth-based points")
parser.add_argument("--background_mode", action="store_true", help="Run the viser server in background mode")
parser.add_argument("--port", type=int, default=8080, help="Port number for the viser server")
parser.add_argument(
"--conf_threshold", type=float, default=25.0, help="Initial percentage of low-confidence points to filter out"
)
parser.add_argument("--mask_sky", action="store_true", help="Apply sky segmentation to filter out sky points")
def main():
"""
Main function for the VGGT demo with viser for 3D visualization.
This function:
1. Loads the VGGT model
2. Processes input images from the specified folder
3. Runs inference to generate 3D points and camera poses
4. Optionally applies sky segmentation to filter out sky points
5. Visualizes the results using viser
Command-line arguments:
--image_folder: Path to folder containing input images
--use_point_map: Use point map instead of depth-based points
--background_mode: Run the viser server in background mode
--port: Port number for the viser server
--conf_threshold: Initial percentage of low-confidence points to filter out
--mask_sky: Apply sky segmentation to filter out sky points
"""
args = parser.parse_args()
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
print("Initializing and loading VGGT model...")
# model = VGGT.from_pretrained("facebook/VGGT-1B")
model = VGGT()
_URL = "https://huggingface.co/facebook/VGGT-1B/resolve/main/model.pt"
model.load_state_dict(torch.hub.load_state_dict_from_url(_URL))
model.eval()
model = model.to(device)
# Use the provided image folder path
print(f"Loading images from {args.image_folder}...")
image_names = glob.glob(os.path.join(args.image_folder, "*"))
print(f"Found {len(image_names)} images")
images = load_and_preprocess_images(image_names).to(device)
print(f"Preprocessed images shape: {images.shape}")
print("Running inference...")
with torch.no_grad():
with torch.cuda.amp.autocast(dtype=torch.bfloat16):
predictions = model(images)
print("Converting pose encoding to extrinsic and intrinsic matrices...")
extrinsic, intrinsic = pose_encoding_to_extri_intri(predictions["pose_enc"], images.shape[-2:])
predictions["extrinsic"] = extrinsic
predictions["intrinsic"] = intrinsic
print("Processing model outputs...")
for key in predictions.keys():
if isinstance(predictions[key], torch.Tensor):
predictions[key] = predictions[key].cpu().numpy().squeeze(0) # remove batch dimension and convert to numpy
if args.use_point_map:
print("Visualizing 3D points from point map")
else:
print("Visualizing 3D points by unprojecting depth map by cameras")
if args.mask_sky:
print("Sky segmentation enabled - will filter out sky points")
print("Starting viser visualization...")
viser_server = viser_wrapper(
predictions,
port=args.port,
init_conf_threshold=args.conf_threshold,
use_point_map=args.use_point_map,
background_mode=args.background_mode,
mask_sky=args.mask_sky,
image_folder=args.image_folder,
)
print("Visualization complete")
if __name__ == "__main__":
main() |