RetinaGAN / app.py
farrell236's picture
Update app.py
ed96423
raw
history blame contribute delete
7.72 kB
import cv2
import numpy as np
import streamlit as st
import tensorflow as tf
from models.cstylegan import cStyleGAN
from models.gaugan import GauGAN
from utils import fix_pred_label, onehot_to_rgb, rgb_to_onehot, color_dict
from skimage import io
@st.cache_resource
def load_cstylegan():
conditional_style_gan = cStyleGAN(start_res=4, target_res=1024)
conditional_style_gan.grow_model(256)
conditional_style_gan.load_weights('checkpoints/cstylegan/cstylegan_256x256.ckpt').expect_partial()
print('Conditional StyleGAN Model Loaded!')
return conditional_style_gan
@st.cache_resource
def load_gaugan(batch_size):
gaugan = GauGAN(image_size=1024, num_classes=7, batch_size=batch_size, latent_dim=512)
gaugan.load_weights('checkpoints/gaugan/gaugan_1024x1024.ckpt').expect_partial()
print('GauGAN Model Loaded!')
return gaugan
def set_seed():
tf.random.set_seed(seed=st.session_state.seed)
def main():
st.title('RetinaGAN')
st.sidebar.columns([1, 5, 1])[1].image(cv2.cvtColor(cv2.imread('assets/sample.jpeg'), cv2.COLOR_BGR2RGB))
st.sidebar.title('Menu')
options = st.sidebar.selectbox('Select Option:', ('About', 'Random', 'Upload your own', 'Retina Template'))
if options == 'About':
st.write('Online Demo for **High-Fidelity Diabetic Retina Fundus Image Synthesis from Freestyle Lesion Maps**')
st.write('''
Paper: https://opg.optica.org/abstract.cfm?uri=boe-14-2-533
Github: http://github.com/farrell236/RetinaGAN
👈 Select an Option From the drop down menu
---
''')
st.write('''
RetinaGAN a two-step process for generating photo-realistic retinal
Fundus images based on artificially generated or free-hand drawn semantic lesion maps.
''')
st.columns([1, 5, 1])[1].image(cv2.cvtColor(cv2.imread('assets/RetinaGAN_pipeline.png'), cv2.COLOR_BGR2RGB),
caption='RetinaGAN Pipeline')
st.write('''
StyleGAN is modified to be conditional in to synthesize pathological lesion maps
based on a specified DR grade (i.e., grades 0 to 4). The DR Grades are defined by the
International Clinical Diabetic Retinopathy (ICDR) disease severity scale;
no apparent retinopathy, {mild, moderate, severe} Non-Proliferative Diabetic Retinopathy (NPDR),
and Proliferative Diabetic Retinopathy (PDR). The output of the network is a binary image with
seven channels instead of class colors to avoid ambiguity.
''')
st.columns([1, 5, 1])[1].image(cv2.cvtColor(cv2.imread('assets/cStyleGAN.png'), cv2.COLOR_BGR2RGB),
caption='Conditional StyleGAN Model')
st.write('''
The generated label maps are then passed through GauGAN, an image-to-image translation network,
to turn them into photo-realistic retina fundus images. The input to the network are one-hot
encoded labels.
''')
st.columns([1, 5, 1])[1].image(cv2.cvtColor(cv2.imread('assets/GauGAN.png'), cv2.COLOR_BGR2RGB),
caption='GauGAN Model')
elif options == 'Random':
st.session_state.seed = st.sidebar.number_input('Sampling Seed:', value=42, on_change=set_seed)
## Load Models
conditional_style_gan = load_cstylegan()
gaugan = load_gaugan(4)
for idx, col in enumerate(st.columns(5)):
z = tf.random.normal((1, conditional_style_gan.z_dim))
w = conditional_style_gan.mapping([z, conditional_style_gan.embedding(idx)])
noise = conditional_style_gan.generate_noise(batch_size=1)
labels = conditional_style_gan.call({"style_code": w, "noise": noise, "alpha": 1.0, "class_label": idx})
labels = tf.keras.backend.softmax(labels)
labels = tf.cast(labels > 0.5, dtype=tf.float32)
labels = tf.image.resize(labels, (1024, 1024), method='nearest')
fixed_labels = fix_pred_label(labels)
fixed_labels = tf.tile(fixed_labels, (4, 1, 1, 1))
latent_vector = tf.random.normal(shape=(4, 512), mean=0.0, stddev=2.0)
fake_image = gaugan.predict([latent_vector, fixed_labels])
with col:
st.text(f'DR Grade {idx}')
st.image(onehot_to_rgb(fixed_labels[0], color_dict), output_format='PNG')
for im in fake_image:
st.image(im)
# Run again?
st.button('Regenerate Images')
elif options == 'Upload your own':
st.session_state.seed = st.sidebar.number_input('Sampling Seed:', value=42, on_change=set_seed)
## Load Models
gaugan = load_gaugan(1)
uploaded_file = st.file_uploader('Choose an image...', type=('png'))
if uploaded_file:
col1, col2 = st.columns(2)
# Read input image with size [H, W, 3] and range (0, 255)
img_array = io.imread(uploaded_file)[..., 0:3]
# Test for valid mask
test_colours = np.unique(img_array.reshape(-1, img_array.shape[2]), axis=0)
if not all([tuple(x) in color_dict.values() for x in test_colours]):
st.info('Mask Contains invalid Class Colours')
return
# Resize image with padding to [1024, 1024, 3]
img_array = tf.image.resize_with_pad(img_array, 1024, 1024, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR)
# Display input image
with col1:
st.image(img_array.numpy(), caption='Uploaded Image')
img_label = rgb_to_onehot(img_array.numpy(), color_dict)[None, ...]
latent_vector = tf.random.normal(shape=(1, 512), mean=0.0, stddev=2.0)
fake_image = gaugan.predict([latent_vector, img_label])[0]
with col2:
st.image(fake_image, caption='Generated Image')
# Run again?
st.button('Regenerate Image')
elif options == 'Retina Template':
st.header('Template')
st.write('Download the Retina Template image below. '
'Using an image editor of your choice, paint lesions '
'into the Vitreous Body and upload it to the model. '
'NB: Images must be stored as lossless PNGs')
template = np.uint8(cv2.circle(np.zeros((1024, 1024, 3)), [512, 512], 512, (255, 255, 255), -1))
st.columns([1, 5, 1])[1].image(template, use_column_width=True, output_format='PNG')
st.header('Class Colours')
cols = st.columns(7)
for idx, cls in enumerate(color_dict):
with cols[idx]:
st.image(image=np.tile(color_dict[cls], (32, 32, 1)),
caption=cls,
output_format='PNG')
# st.caption(color_dict[cls])
data = {'Class Name': [
'Background',
'Hard Exudate',
'Hemohedge',
'Soft Exudate',
'Micro Aneurysms',
'Optical Disc',
'Vitreous Body'],
'RGB Colour': [
str(color_dict[0]), # BG
str(color_dict[1]), # EX
str(color_dict[2]), # HE
str(color_dict[3]), # SE
str(color_dict[4]), # MA
str(color_dict[5]), # OD
str(color_dict[6])] # VB
}
st.table(data)
if __name__ == '__main__':
# tf.config.set_visible_devices([], 'GPU')
main()