File size: 3,877 Bytes
3dbb28b
 
 
 
 
 
de084a6
3dbb28b
 
 
 
 
 
 
 
5c67dfe
7b31b4e
3dbb28b
 
 
 
 
 
 
 
 
de084a6
3dbb28b
de084a6
3dbb28b
5c67dfe
3dbb28b
 
 
 
 
 
 
 
 
 
5c67dfe
3dbb28b
 
 
 
 
 
 
 
a9e8285
de084a6
a9e8285
 
 
 
 
3dbb28b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9633067
3dbb28b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
import base64
import json
import os
from pathlib import Path

import gradio as gr
import huggingface_hub
import numpy as np
from dotenv import load_dotenv
from fastapi import FastAPI
from fastapi.responses import HTMLResponse, StreamingResponse
from fastrtc import (
    AdditionalOutputs,
    ReplyOnPause,
    Stream,
    get_stt_model,
    get_twilio_turn_credentials,
)
from gradio.utils import get_space
from pydantic import BaseModel

load_dotenv()

curr_dir = Path(__file__).parent


client = huggingface_hub.InferenceClient(
    api_key=os.environ.get("SAMBANOVA_API_KEY"),
    provider="sambanova",
)
stt_model = get_stt_model()


def response(
    audio: tuple[int, np.ndarray],
    gradio_chatbot: list[dict] | None = None,
    conversation_state: list[dict] | None = None,
):
    gradio_chatbot = gradio_chatbot or []
    conversation_state = conversation_state or []

    text = stt_model.stt(audio)
    sample_rate, array = audio
    gradio_chatbot.append(
        {"role": "user", "content": gr.Audio((sample_rate, array.squeeze()))}
    )
    yield AdditionalOutputs(gradio_chatbot, conversation_state)

    conversation_state.append({"role": "user", "content": text})

    request = client.chat.completions.create(
        model="meta-llama/Llama-3.2-3B-Instruct",
        messages=conversation_state,  # type: ignore
        temperature=0.1,
        top_p=0.1,
    )
    response = {"role": "assistant", "content": request.choices[0].message.content}

    conversation_state.append(response)
    gradio_chatbot.append(response)

    yield AdditionalOutputs(gradio_chatbot, conversation_state)


chatbot = gr.Chatbot(type="messages", value=[])
state = gr.State(value=[])
stream = Stream(
    ReplyOnPause(
        response,  # type: ignore
        input_sample_rate=16000,
    ),
    mode="send",
    modality="audio",
    additional_inputs=[chatbot, state],
    additional_outputs=[chatbot, state],
    additional_outputs_handler=lambda *a: (a[2], a[3]),
    concurrency_limit=20 if get_space() else None,
    rtc_configuration=get_twilio_turn_credentials() if get_space() else None,
)

app = FastAPI()
stream.mount(app)


class Message(BaseModel):
    role: str
    content: str


class InputData(BaseModel):
    webrtc_id: str
    chatbot: list[Message]
    state: list[Message]


@app.get("/")
async def _():
    rtc_config = get_twilio_turn_credentials() if get_space() else None
    html_content = (curr_dir / "index.html").read_text()
    html_content = html_content.replace("__RTC_CONFIGURATION__", json.dumps(rtc_config))
    return HTMLResponse(content=html_content)


@app.post("/input_hook")
async def _(data: InputData):
    body = data.model_dump()
    stream.set_input(data.webrtc_id, body["chatbot"], body["state"])


def audio_to_base64(file_path):
    audio_format = "wav"
    with open(file_path, "rb") as audio_file:
        encoded_audio = base64.b64encode(audio_file.read()).decode("utf-8")
    return f"data:audio/{audio_format};base64,{encoded_audio}"


@app.get("/outputs")
async def _(webrtc_id: str):
    async def output_stream():
        async for output in stream.output_stream(webrtc_id):
            chatbot = output.args[0]
            state = output.args[1]
            data = {
                "message": state[-1],
                "audio": audio_to_base64(chatbot[-1]["content"].value["path"])
                if chatbot[-1]["role"] == "user"
                else None,
            }
            yield f"event: output\ndata: {json.dumps(data)}\n\n"

    return StreamingResponse(output_stream(), media_type="text/event-stream")


if __name__ == "__main__":
    import os

    if (mode := os.getenv("MODE")) == "UI":
        stream.ui.launch(server_port=7860)
    elif mode == "PHONE":
        raise ValueError("Phone mode not supported")
    else:
        import uvicorn

        uvicorn.run(app, host="0.0.0.0", port=7860)