kokoro-mcp / app.py
fdaudens's picture
fdaudens HF Staff
Update app.py
6d86d13 verified
import gradio as gr
import torch
import numpy as np
import os
import io
import base64
from kokoro import KModel, KPipeline
# Check if CUDA is available
CUDA_AVAILABLE = torch.cuda.is_available()
# Initialize the model
model = KModel().to('cuda' if CUDA_AVAILABLE else 'cpu').eval()
# Initialize pipelines for different language codes (using 'a' for English)
pipelines = {'a': KPipeline(lang_code='a', model=False)}
# Custom pronunciation for "kokoro"
pipelines['a'].g2p.lexicon.golds['kokoro'] = 'kˈOkəɹO'
def text_to_audio(text, speed=1.0):
"""Convert text to audio using Kokoro model.
Args:
text: The text to convert to speech
speed: Speech speed multiplier (0.5-2.0, where 1.0 is normal speed)
Returns:
Audio data as a tuple of (sample_rate, audio_array)
"""
if not text:
return None
pipeline = pipelines['a'] # Use English pipeline
voice = "af_heart" # Default voice (US English, female, Heart)
# Process the text
pack = pipeline.load_voice(voice)
for _, ps, _ in pipeline(text, voice, speed):
ref_s = pack[len(ps)-1]
# Generate audio
try:
audio = model(ps, ref_s, speed)
except Exception as e:
raise gr.Error(f"Error generating audio: {str(e)}")
# Return the audio with 24kHz sample rate
return 24000, audio.numpy()
return None
def text_to_audio_b64(text, speed=1.0):
"""Convert text to audio and return as base64 encoded WAV file.
Args:
text: The text to convert to speech
speed: Speech speed multiplier (0.5-2.0, where 1.0 is normal speed)
Returns:
Base64 encoded WAV file as a string
"""
import soundfile as sf
result = text_to_audio(text, speed)
if result is None:
return None
sample_rate, audio_data = result
# Save to BytesIO object
wav_io = io.BytesIO()
sf.write(wav_io, audio_data, sample_rate, format='WAV')
wav_io.seek(0)
# Convert to base64
wav_b64 = base64.b64encode(wav_io.read()).decode('utf-8')
return wav_b64
# Create Gradio interface
with gr.Blocks(title="Kokoro Text-to-Audio MCP") as app:
gr.Markdown("# 🎵 Kokoro Text-to-Audio MCP")
gr.Markdown("Convert text to speech using the Kokoro-82M model")
with gr.Row():
with gr.Column():
text_input = gr.Textbox(
label="Enter your text",
placeholder="Type something to convert to audio...",
lines=5
)
speed_slider = gr.Slider(
minimum=0.5,
maximum=2.0,
value=1.0,
step=0.1,
label="Speech Speed"
)
submit_btn = gr.Button("Generate Audio")
with gr.Column():
audio_output = gr.Audio(label="Generated Audio", type="numpy")
submit_btn.click(
fn=text_to_audio,
inputs=[text_input, speed_slider],
outputs=[audio_output]
)
gr.Markdown("### Usage Tips")
gr.Markdown("- Adjust the speed slider to modify the pace of speech")
# Add section about MCP support
with gr.Accordion("MCP Support (for LLMs)", open=False):
gr.Markdown("""
### MCP Support
This app supports the Model Context Protocol (MCP), allowing Large Language Models like Claude Desktop to use it as a tool.
To use this app with an MCP client, add the following configuration:
```json
{
"mcpServers": {
"kokoroTTS": {
"url": "https://fdaudens-kokoro-mcp.hf.space/gradio_api/mcp/sse"
}
}
}
```
Replace `your-app-url.hf.space` with your actual Hugging Face Space URL.
""")
# Launch the app with MCP support
if __name__ == "__main__":
# Check for environment variable to enable MCP
enable_mcp = os.environ.get('GRADIO_MCP_SERVER', 'False').lower() in ('true', '1', 't')
app.launch(mcp_server=True)