Hugging Face Space Fixer
Remove model information display while maintaining functionality
0e3d4dc
raw
history blame contribute delete
14.8 kB
import cv2
import torch
import numpy as np
import torch.nn.functional as F
from torch import nn
from transformers import AutoImageProcessor, Swinv2ForImageClassification, SegformerForSemanticSegmentation
import streamlit as st
from PIL import Image
import io
import zipfile
import pandas as pd
from datetime import datetime
import os
import tempfile
import base64
# Add at the top with other constants
MODEL_OPTIONS = {
"Default (ferferefer/segformer)": "ferferefer/segformer",
"Pamixsun": "pamixsun/segformer_for_optic_disc_cup_segmentation"
}
# --- GlaucomaModel Class ---
class GlaucomaModel(object):
def __init__(self,
cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification",
seg_model_path=None,
device=torch.device('cpu')):
self.device = device
self.seg_model_path = seg_model_path or MODEL_OPTIONS["Pamixsun"]
# Classification model setup remains the same
self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path)
self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval()
# Segmentation model setup with model type detection
self.seg_extractor = AutoImageProcessor.from_pretrained(self.seg_model_path)
self.seg_model = SegformerForSemanticSegmentation.from_pretrained(self.seg_model_path).to(device).eval()
# Detect model type
self.is_ferferefer = "ferferefer" in self.seg_model_path.lower()
self.cls_id2label = self.cls_model.config.id2label
def glaucoma_pred(self, image):
inputs = self.cls_extractor(images=image.copy(), return_tensors="pt")
with torch.no_grad():
inputs.to(self.device)
outputs = self.cls_model(**inputs).logits
probs = F.softmax(outputs, dim=-1)
disease_idx = probs.cpu()[0, :].numpy().argmax()
confidence = probs.cpu()[0, disease_idx].item() * 100
return disease_idx, confidence
def optic_disc_cup_pred(self, image):
inputs = self.seg_extractor(images=image.copy(), return_tensors="pt")
with torch.no_grad():
inputs.to(self.device)
outputs = self.seg_model(**inputs)
logits = outputs.logits.cpu()
upsampled_logits = nn.functional.interpolate(
logits, size=image.shape[:2], mode="bilinear", align_corners=False
)
if self.is_ferferefer:
# ferferefer model specific processing
seg_probs = F.softmax(upsampled_logits, dim=1)
pred_disc_cup = upsampled_logits.argmax(dim=1)[0]
# Map ferferefer model classes to match Pamixsun format
# Assuming ferferefer uses different class indices
class_mapping = {
0: 0, # background
1: 1, # disc
2: 2 # cup
}
pred_disc_cup_mapped = torch.zeros_like(pred_disc_cup)
for old_class, new_class in class_mapping.items():
pred_disc_cup_mapped[pred_disc_cup == old_class] = new_class
pred_disc_cup = pred_disc_cup_mapped
else:
# Pamixsun model processing (original logic)
seg_probs = F.softmax(upsampled_logits, dim=1)
pred_disc_cup = upsampled_logits.argmax(dim=1)[0]
# Calculate confidences
cup_mask = pred_disc_cup == 2
disc_mask = pred_disc_cup == 1
cup_confidence = seg_probs[0, 2, cup_mask].mean().item() * 100 if cup_mask.any() else 0
disc_confidence = seg_probs[0, 1, disc_mask].mean().item() * 100 if disc_mask.any() else 0
return pred_disc_cup.numpy().astype(np.uint8), cup_confidence, disc_confidence
def process(self, image):
disease_idx, cls_confidence = self.glaucoma_pred(image)
disc_cup, cup_confidence, disc_confidence = self.optic_disc_cup_pred(image)
try:
vcdr = simple_vcdr(disc_cup)
except:
vcdr = np.nan
mask = (disc_cup > 0).astype(np.uint8)
x, y, w, h = cv2.boundingRect(mask)
padding = max(50, int(0.2 * max(w, h)))
x = max(x - padding, 0)
y = max(y - padding, 0)
w = min(w + 2 * padding, image.shape[1] - x)
h = min(h + 2 * padding, image.shape[0] - y)
cropped_image = image[y:y+h, x:x+w] if w >= 50 and h >= 50 else image.copy()
_, disc_cup_image = add_mask(image, disc_cup, [1, 2], [[0, 255, 0], [255, 0, 0]], 0.2)
return disease_idx, disc_cup_image, vcdr, cls_confidence, cup_confidence, disc_confidence, cropped_image
# --- Utility Functions ---
def simple_vcdr(mask):
disc_area = np.sum(mask == 1)
cup_area = np.sum(mask == 2)
if disc_area == 0:
return np.nan
vcdr = cup_area / disc_area
return vcdr
def add_mask(image, mask, classes, colors, alpha=0.5):
overlay = image.copy()
for class_id, color in zip(classes, colors):
overlay[mask == class_id] = color
output = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
return output, overlay
def get_confidence_level(confidence):
"""Enhanced confidence descriptions for segmentation"""
if confidence >= 90:
return "Excellent (Model is very certain about the detected boundaries)"
elif confidence >= 75:
return "Good (Model is confident about most of the detected area)"
elif confidence >= 60:
return "Fair (Model has some uncertainty in parts of the detection)"
elif confidence >= 45:
return "Poor (Model is uncertain about many detected areas)"
else:
return "Very Poor (Model's detection is highly uncertain)"
def process_batch(model, images_data, progress_bar=None):
results = []
for idx, (file_name, image) in enumerate(images_data):
try:
disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image)
results.append({
'file_name': file_name,
'diagnosis': model.cls_id2label[disease_idx],
'confidence': cls_conf,
'vcdr': vcdr,
'cup_conf': cup_conf,
'disc_conf': disc_conf,
'processed_image': disc_cup_image,
'cropped_image': cropped_image
})
if progress_bar:
progress_bar.progress((idx + 1) / len(images_data))
except Exception as e:
st.error(f"Error processing {file_name}: {str(e)}")
return results
def save_results(results, original_images):
# Create temporary directory for results
with tempfile.TemporaryDirectory() as temp_dir:
# Save report as CSV
df = pd.DataFrame([{
'File': r['file_name'],
'Diagnosis': r['diagnosis'],
'Confidence (%)': f"{r['confidence']:.1f}",
'VCDR': f"{r['vcdr']:.3f}",
'Cup Confidence (%)': f"{r['cup_conf']:.1f}",
'Disc Confidence (%)': f"{r['disc_conf']:.1f}"
} for r in results])
report_path = os.path.join(temp_dir, 'report.csv')
df.to_csv(report_path, index=False)
# Save processed images
for result, orig_img in zip(results, original_images):
img_name = result['file_name']
base_name = os.path.splitext(img_name)[0]
# Save original
orig_path = os.path.join(temp_dir, f"{base_name}_original.jpg")
Image.fromarray(orig_img).save(orig_path)
# Save segmentation
seg_path = os.path.join(temp_dir, f"{base_name}_segmentation.jpg")
Image.fromarray(result['processed_image']).save(seg_path)
# Save ROI
roi_path = os.path.join(temp_dir, f"{base_name}_roi.jpg")
Image.fromarray(result['cropped_image']).save(roi_path)
# Create ZIP file
zip_path = os.path.join(temp_dir, 'results.zip')
with zipfile.ZipFile(zip_path, 'w') as zipf:
for root, _, files in os.walk(temp_dir):
for file in files:
if file != 'results.zip':
file_path = os.path.join(root, file)
arcname = os.path.basename(file_path)
zipf.write(file_path, arcname)
with open(zip_path, 'rb') as f:
return f.read()
# --- Streamlit Interface ---
def main():
# Use the old layout setting method
st.set_page_config(layout="wide")
# Header with credit
st.markdown("""
# Glaucoma Screening from Retinal Fundus Images
### Developed by Dr Fernando Ly
This application provides automated glaucoma detection and optic disc/cup segmentation from retinal fundus images.
The system uses advanced deep learning models to assist in glaucoma screening.
""")
# Hidden model selection with default to Pamixsun
selected_model = list(MODEL_OPTIONS.keys())[1] # Default to Pamixsun
st.sidebar.title("Upload Images")
st.set_option('deprecation.showfileUploaderEncoding', False) # Important for old versions
uploaded_files = st.sidebar.file_uploader(
"Upload retinal images",
type=['png', 'jpeg', 'jpg'],
accept_multiple_files=True
)
# Enhanced explanation in sidebar
st.sidebar.markdown("""
### Understanding Results:
- **Diagnosis Confidence**: AI model's certainty level in classification
- **VCDR**: Vertical Cup to Disc Ratio (>0.7 indicates high risk)
- **Segmentation**: Green represents optic disc, Red represents optic cup
### About
This tool combines state-of-the-art deep learning models for:
1. Glaucoma Classification
2. Optic Disc/Cup Segmentation
For optimal results, please use clear retinal fundus images.
""")
if uploaded_files:
try:
# Load models silently without displaying information
model = GlaucomaModel(
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu"),
seg_model_path=MODEL_OPTIONS[selected_model]
)
for file in uploaded_files:
try:
st.info(f"๐Ÿ“ธ Processing: {file.name}")
image = Image.open(file).convert('RGB')
image_np = np.array(image)
disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image_np)
st.write("---")
st.success(f"Results for: {file.name}")
# Key findings with better visuals
st.info("๐Ÿ“Š Key Findings")
# Diagnosis with color-coded warning levels
diagnosis = model.cls_id2label[disease_idx]
if diagnosis == "Glaucoma":
st.warning(f"Diagnosis: {diagnosis} ({cls_conf:.1f}% confidence)")
else:
st.success(f"Diagnosis: {diagnosis} ({cls_conf:.1f}% confidence)")
# VCDR with risk levels
if vcdr > 0.7:
st.warning(f"VCDR: {vcdr:.3f} - โš ๏ธ High Risk")
elif vcdr > 0.5:
st.warning(f"VCDR: {vcdr:.3f} - โš ๏ธ Borderline")
else:
st.success(f"VCDR: {vcdr:.3f} - โœ… Normal")
# Segmentation confidence
st.info("๐Ÿ” Segmentation Confidence")
st.write("""
โ€ข Optic Cup (red area): Central depression
โ€ข Optic Disc (green outline): Entire nerve area
""")
# Cup and Disc confidence with warnings
if cup_conf < 60:
st.warning(f"Cup Detection: {cup_conf:.1f}% - Low Confidence")
else:
st.write(f"Cup Detection: {cup_conf:.1f}%")
if disc_conf < 60:
st.warning(f"Disc Detection: {disc_conf:.1f}% - Low Confidence")
else:
st.write(f"Disc Detection: {disc_conf:.1f}%")
# Images with clear sections
st.info("๐Ÿ–ผ๏ธ Analysis Images")
st.image(disc_cup_image, caption="Green: Optic Disc | Red: Optic Cup")
st.image(cropped_image, caption="Region of Interest")
except Exception as e:
st.error(f"Error processing {file.name}: {str(e)}")
continue
# Download section
try:
st.info("๐Ÿ“ฅ Preparing Download")
results = []
original_images = []
for file in uploaded_files:
image = Image.open(file).convert('RGB')
image_np = np.array(image)
disease_idx, disc_cup_image, vcdr, cls_conf, cup_conf, disc_conf, cropped_image = model.process(image_np)
results.append({
'file_name': file.name,
'diagnosis': model.cls_id2label[disease_idx],
'confidence': cls_conf,
'vcdr': vcdr,
'cup_conf': cup_conf,
'disc_conf': disc_conf,
'processed_image': disc_cup_image,
'cropped_image': cropped_image
})
original_images.append(image_np)
zip_data = save_results(results, original_images)
b64_zip = base64.b64encode(zip_data).decode()
st.success("โœ… Download Ready")
href = f'<a href="data:application/zip;base64,{b64_zip}" download="glaucoma_results.zip">๐Ÿ“ฅ Download All Results (ZIP)</a>'
st.markdown(href, unsafe_allow_html=True)
except Exception as e:
st.error(f"Error preparing download: {str(e)}")
st.success("โœ… All Processing Complete!")
except Exception as e:
st.error(f"An error occurred: {str(e)}")
if __name__ == "__main__":
main()