Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import json
|
|
7 |
from torchvision import models
|
8 |
import librosa
|
9 |
|
10 |
-
# Define the BirdCallRNN model
|
11 |
class BirdCallRNN(nn.Module):
|
12 |
def __init__(self, resnet, num_features, num_classes):
|
13 |
super(BirdCallRNN, self).__init__()
|
@@ -21,7 +21,7 @@ class BirdCallRNN(nn.Module):
|
|
21 |
features = self.resnet(x)
|
22 |
features = features.view(batch, seq_len, -1)
|
23 |
rnn_out, _ = self.rnn(features)
|
24 |
-
output = self.fc(rnn_out[:, -1, :])
|
25 |
return output
|
26 |
|
27 |
# Function to convert MP3 to mel spectrogram (unchanged)
|
@@ -45,12 +45,14 @@ def mp3_to_mel_spectrogram(mp3_file, target_shape=(128, 500), resize_shape=(224,
|
|
45 |
with open('class_mapping.json', 'r') as f:
|
46 |
class_names = json.load(f)
|
47 |
|
48 |
-
# Revised inference function to
|
49 |
def infer_birdcall(model, mp3_file, segment_length=500, device="cuda"):
|
50 |
model.eval()
|
|
|
51 |
y, sr = librosa.load(mp3_file, sr=None)
|
52 |
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=8000)
|
53 |
log_S = librosa.power_to_db(S, ref=np.max)
|
|
|
54 |
num_segments = log_S.shape[1] // segment_length
|
55 |
if num_segments == 0:
|
56 |
segments = [log_S]
|
@@ -58,43 +60,53 @@ def infer_birdcall(model, mp3_file, segment_length=500, device="cuda"):
|
|
58 |
segments = [log_S[:, i * segment_length:(i + 1) * segment_length] for i in range(num_segments)]
|
59 |
|
60 |
predictions = []
|
|
|
61 |
for seg in segments:
|
62 |
seg_resized = cv2.resize(seg, (224, 224), interpolation=cv2.INTER_CUBIC)
|
63 |
seg_rgb = np.repeat(seg_resized[:, :, np.newaxis], 3, axis=-1)
|
64 |
-
|
|
|
65 |
output = model(seg_tensor)
|
|
|
66 |
probs = torch.softmax(output, dim=1)
|
67 |
-
confidence,
|
68 |
-
|
69 |
confidence = confidence.cpu().numpy()[0]
|
70 |
-
predicted_bird = class_names
|
71 |
-
predictions.append(
|
72 |
return predictions
|
73 |
|
74 |
# Initialize the model
|
75 |
resnet = models.resnet50(weights='IMAGENET1K_V2')
|
76 |
num_features = resnet.fc.in_features
|
77 |
resnet.fc = nn.Identity()
|
78 |
-
num_classes = len(class_names)
|
79 |
model = BirdCallRNN(resnet, num_features, num_classes)
|
80 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
81 |
model.to(device)
|
82 |
model.load_state_dict(torch.load('model_weights.pth', map_location=device))
|
83 |
model.eval()
|
84 |
|
85 |
-
# Prediction function
|
86 |
def predict_bird(file_path):
|
87 |
predictions = infer_birdcall(model, file_path, segment_length=500, device=str(device))
|
88 |
-
|
|
|
89 |
return formatted_predictions
|
90 |
|
91 |
# Custom Gradio interface
|
92 |
def gradio_interface(file_path):
|
|
|
93 |
prediction = predict_bird(file_path)
|
94 |
-
|
|
|
|
|
|
|
|
|
95 |
bird_species_image = gr.Image("1.jpg", label="Bird Species")
|
96 |
bird_description_image = gr.Image("2.jpg", label="Bird Description")
|
97 |
bird_origins_image = gr.Image("3.jpg", label="Bird Origins")
|
|
|
98 |
return prediction, audio_player, bird_species_image, bird_description_image, bird_origins_image
|
99 |
|
100 |
# Launch Gradio interface
|
@@ -109,4 +121,4 @@ interface = gr.Interface(
|
|
109 |
gr.Image(label="Bird Origins")
|
110 |
]
|
111 |
)
|
112 |
-
interface.launch(share=True)
|
|
|
7 |
from torchvision import models
|
8 |
import librosa
|
9 |
|
10 |
+
# Define the BirdCallRNN model (unchanged)
|
11 |
class BirdCallRNN(nn.Module):
|
12 |
def __init__(self, resnet, num_features, num_classes):
|
13 |
super(BirdCallRNN, self).__init__()
|
|
|
21 |
features = self.resnet(x)
|
22 |
features = features.view(batch, seq_len, -1)
|
23 |
rnn_out, _ = self.rnn(features)
|
24 |
+
output = self.fc(rnn_out[:, -1, :])
|
25 |
return output
|
26 |
|
27 |
# Function to convert MP3 to mel spectrogram (unchanged)
|
|
|
45 |
with open('class_mapping.json', 'r') as f:
|
46 |
class_names = json.load(f)
|
47 |
|
48 |
+
# Revised inference function to include confidence scores
|
49 |
def infer_birdcall(model, mp3_file, segment_length=500, device="cuda"):
|
50 |
model.eval()
|
51 |
+
# Load audio and compute mel spectrogram
|
52 |
y, sr = librosa.load(mp3_file, sr=None)
|
53 |
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=8000)
|
54 |
log_S = librosa.power_to_db(S, ref=np.max)
|
55 |
+
# Segment the spectrogram
|
56 |
num_segments = log_S.shape[1] // segment_length
|
57 |
if num_segments == 0:
|
58 |
segments = [log_S]
|
|
|
60 |
segments = [log_S[:, i * segment_length:(i + 1) * segment_length] for i in range(num_segments)]
|
61 |
|
62 |
predictions = []
|
63 |
+
# Process each segment individually
|
64 |
for seg in segments:
|
65 |
seg_resized = cv2.resize(seg, (224, 224), interpolation=cv2.INTER_CUBIC)
|
66 |
seg_rgb = np.repeat(seg_resized[:, :, np.newaxis], 3, axis=-1)
|
67 |
+
# Create a tensor with batch size 1 and sequence length 1
|
68 |
+
seg_tensor = torch.from_numpy(seg_rgb).permute(2, 0, 1).float().unsqueeze(0).unsqueeze(0).to(device) # Shape: (1, 1, 3, 224, 224)
|
69 |
output = model(seg_tensor)
|
70 |
+
# Apply softmax to get probabilities
|
71 |
probs = torch.softmax(output, dim=1)
|
72 |
+
confidence, pred_idx = torch.max(probs, dim=1)
|
73 |
+
pred_idx = pred_idx.cpu().numpy()[0]
|
74 |
confidence = confidence.cpu().numpy()[0]
|
75 |
+
predicted_bird = class_names[str(pred_idx)]
|
76 |
+
predictions.append((predicted_bird, confidence))
|
77 |
return predictions
|
78 |
|
79 |
# Initialize the model
|
80 |
resnet = models.resnet50(weights='IMAGENET1K_V2')
|
81 |
num_features = resnet.fc.in_features
|
82 |
resnet.fc = nn.Identity()
|
83 |
+
num_classes = len(class_names) # Should be 114
|
84 |
model = BirdCallRNN(resnet, num_features, num_classes)
|
85 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
86 |
model.to(device)
|
87 |
model.load_state_dict(torch.load('model_weights.pth', map_location=device))
|
88 |
model.eval()
|
89 |
|
90 |
+
# Prediction function with confidence scores
|
91 |
def predict_bird(file_path):
|
92 |
predictions = infer_birdcall(model, file_path, segment_length=500, device=str(device))
|
93 |
+
# Format predictions as a numbered list with confidence scores
|
94 |
+
formatted_predictions = "\n".join([f"{i+1}. {pred} (Confidence: {conf*100:.2f}%)" for i, (pred, conf) in enumerate(predictions)])
|
95 |
return formatted_predictions
|
96 |
|
97 |
# Custom Gradio interface
|
98 |
def gradio_interface(file_path):
|
99 |
+
# Predict bird species with confidence
|
100 |
prediction = predict_bird(file_path)
|
101 |
+
|
102 |
+
# Display the uploaded MP3 file with a play button
|
103 |
+
audio_player = gr.Audio(file_path, label="Uploaded MP3 File", visible=True, autoplay=False)
|
104 |
+
|
105 |
+
# Display images with titles
|
106 |
bird_species_image = gr.Image("1.jpg", label="Bird Species")
|
107 |
bird_description_image = gr.Image("2.jpg", label="Bird Description")
|
108 |
bird_origins_image = gr.Image("3.jpg", label="Bird Origins")
|
109 |
+
|
110 |
return prediction, audio_player, bird_species_image, bird_description_image, bird_origins_image
|
111 |
|
112 |
# Launch Gradio interface
|
|
|
121 |
gr.Image(label="Bird Origins")
|
122 |
]
|
123 |
)
|
124 |
+
interface.launch(share=True)
|