Update app.py
Browse files
app.py
CHANGED
@@ -6,8 +6,11 @@ import numpy as np
|
|
6 |
import json
|
7 |
from torchvision import models
|
8 |
import librosa
|
|
|
|
|
|
|
9 |
|
10 |
-
# Define the BirdCallRNN model
|
11 |
class BirdCallRNN(nn.Module):
|
12 |
def __init__(self, resnet, num_features, num_classes):
|
13 |
super(BirdCallRNN, self).__init__()
|
@@ -21,77 +24,87 @@ class BirdCallRNN(nn.Module):
|
|
21 |
features = self.resnet(x)
|
22 |
features = features.view(batch, seq_len, -1)
|
23 |
rnn_out, _ = self.rnn(features)
|
24 |
-
output = self.fc(rnn_out[:, -1, :])
|
25 |
return output
|
26 |
|
27 |
-
# Function to
|
28 |
-
def
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
else:
|
40 |
-
log_S_resized = log_S
|
41 |
-
log_S_resized = cv2.resize(log_S_resized, resize_shape, interpolation=cv2.INTER_CUBIC)
|
42 |
-
return log_S_resized
|
43 |
|
44 |
-
# Load class mapping
|
45 |
with open('class_mapping.json', 'r') as f:
|
46 |
class_names = json.load(f)
|
47 |
|
48 |
-
# Revised inference function to predict per segment
|
49 |
-
def infer_birdcall(model, mp3_file, segment_length=500, device="cuda"):
|
50 |
-
model.eval()
|
51 |
-
# Load audio and compute mel spectrogram
|
52 |
-
y, sr = librosa.load(mp3_file, sr=None)
|
53 |
-
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=8000)
|
54 |
-
log_S = librosa.power_to_db(S, ref=np.max)
|
55 |
-
# Segment the spectrogram
|
56 |
-
num_segments = log_S.shape[1] // segment_length
|
57 |
-
if num_segments == 0:
|
58 |
-
segments = [log_S]
|
59 |
-
else:
|
60 |
-
segments = [log_S[:, i * segment_length:(i + 1) * segment_length] for i in range(num_segments)]
|
61 |
-
|
62 |
-
predictions = []
|
63 |
-
# Process each segment individually
|
64 |
-
for seg in segments:
|
65 |
-
seg_resized = cv2.resize(seg, (224, 224), interpolation=cv2.INTER_CUBIC)
|
66 |
-
seg_rgb = np.repeat(seg_resized[:, :, np.newaxis], 3, axis=-1)
|
67 |
-
# Create a tensor with batch size 1 and sequence length 1
|
68 |
-
seg_tensor = torch.from_numpy(seg_rgb).permute(2, 0, 1).float().unsqueeze(0).unsqueeze(0).to(device) # Shape: (1, 1, 3, 224, 224)
|
69 |
-
output = model(seg_tensor)
|
70 |
-
pred = torch.max(output, dim=1)[1].cpu().numpy()[0]
|
71 |
-
predicted_bird = class_names[str(pred)] # Convert pred to string to match JSON keys
|
72 |
-
predictions.append(predicted_bird)
|
73 |
-
return predictions
|
74 |
-
|
75 |
# Initialize the model
|
76 |
resnet = models.resnet50(weights='IMAGENET1K_V2')
|
77 |
num_features = resnet.fc.in_features
|
78 |
resnet.fc = nn.Identity()
|
79 |
-
num_classes = len(class_names)
|
80 |
model = BirdCallRNN(resnet, num_features, num_classes)
|
81 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
82 |
model.to(device)
|
83 |
model.load_state_dict(torch.load('model_weights.pth', map_location=device))
|
84 |
model.eval()
|
85 |
|
86 |
-
# Prediction function
|
87 |
-
def predict_bird(
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
-
#
|
92 |
interface = gr.Interface(
|
93 |
fn=predict_bird,
|
94 |
-
inputs=gr.
|
95 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
)
|
97 |
interface.launch()
|
|
|
6 |
import json
|
7 |
from torchvision import models
|
8 |
import librosa
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from io import BytesIO
|
11 |
+
import PIL.Image
|
12 |
|
13 |
+
# Define the BirdCallRNN model class
|
14 |
class BirdCallRNN(nn.Module):
|
15 |
def __init__(self, resnet, num_features, num_classes):
|
16 |
super(BirdCallRNN, self).__init__()
|
|
|
24 |
features = self.resnet(x)
|
25 |
features = features.view(batch, seq_len, -1)
|
26 |
rnn_out, _ = self.rnn(features)
|
27 |
+
output = self.fc(rnn_out[:, -1, :])
|
28 |
return output
|
29 |
|
30 |
+
# Function to plot mel spectrogram
|
31 |
+
def plot_spectrogram(log_S, sr):
|
32 |
+
fig, ax = plt.subplots(figsize=(10, 4))
|
33 |
+
img = librosa.display.specshow(log_S, sr=sr, x_axis='time', y_axis='mel', ax=ax)
|
34 |
+
fig.colorbar(img, ax=ax, format='%+2.0f dB')
|
35 |
+
ax.set_title('Mel Spectrogram')
|
36 |
+
buf = BytesIO()
|
37 |
+
plt.savefig(buf, format='png')
|
38 |
+
buf.seek(0)
|
39 |
+
img = PIL.Image.open(buf)
|
40 |
+
plt.close(fig)
|
41 |
+
return img
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Load class mapping
|
44 |
with open('class_mapping.json', 'r') as f:
|
45 |
class_names = json.load(f)
|
46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
# Initialize the model
|
48 |
resnet = models.resnet50(weights='IMAGENET1K_V2')
|
49 |
num_features = resnet.fc.in_features
|
50 |
resnet.fc = nn.Identity()
|
51 |
+
num_classes = len(class_names)
|
52 |
model = BirdCallRNN(resnet, num_features, num_classes)
|
53 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
54 |
model.to(device)
|
55 |
model.load_state_dict(torch.load('model_weights.pth', map_location=device))
|
56 |
model.eval()
|
57 |
|
58 |
+
# Prediction function
|
59 |
+
def predict_bird(audio):
|
60 |
+
# Load audio file
|
61 |
+
y, sr = librosa.load(audio, sr=None)
|
62 |
+
S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128, fmax=8000)
|
63 |
+
log_S = librosa.power_to_db(S, ref=np.max)
|
64 |
+
|
65 |
+
# Generate spectrogram image
|
66 |
+
spectrogram_img = plot_spectrogram(log_S, sr)
|
67 |
+
|
68 |
+
# Segment audio and predict
|
69 |
+
predictions = []
|
70 |
+
segment_length = 500
|
71 |
+
num_segments = log_S.shape[1] // segment_length
|
72 |
+
segments = [log_S] if num_segments == 0 else [log_S[:, i * segment_length:(i + 1) * segment_length] for i in range(num_segments)]
|
73 |
+
for seg in segments:
|
74 |
+
seg_resized = cv2.resize(seg, (224, 224), interpolation=cv2.INTER_CUBIC)
|
75 |
+
seg_rgb = np.repeat(seg_resized[:, :, np.newaxis], 3, axis=-1)
|
76 |
+
seg_tensor = torch.from_numpy(seg_rgb).permute(2, 0, 1).float().unsqueeze(0).unsqueeze(0).to(device)
|
77 |
+
output = model(seg_tensor)
|
78 |
+
probs = torch.softmax(output, dim=1)
|
79 |
+
confidence, pred = torch.max(probs, dim=1)
|
80 |
+
pred = pred.cpu().numpy()[0]
|
81 |
+
confidence = confidence.cpu().numpy()[0]
|
82 |
+
predicted_bird = class_names[str(pred)]
|
83 |
+
predictions.append((predicted_bird, confidence))
|
84 |
+
|
85 |
+
# Format predictions as HTML
|
86 |
+
predictions_html = "<ol>"
|
87 |
+
for i, (bird, conf) in enumerate(predictions, 1):
|
88 |
+
predictions_html += f"<li>{bird} (Confidence: {conf*100:.1f}%)</li>"
|
89 |
+
predictions_html += "</ol>"
|
90 |
+
|
91 |
+
return spectrogram_img, predictions_html
|
92 |
|
93 |
+
# Gradio interface
|
94 |
interface = gr.Interface(
|
95 |
fn=predict_bird,
|
96 |
+
inputs=gr.Audio(label="Upload MP3 file", type="filepath"),
|
97 |
+
outputs=[
|
98 |
+
gr.Image(label="Mel Spectrogram"),
|
99 |
+
gr.HTML(label="Predicted Bird Species")
|
100 |
+
],
|
101 |
+
description="""
|
102 |
+
<h3>Bird Species</h3>
|
103 |
+
<img src='1.jpeg' width='300'>
|
104 |
+
<h3>Bird Description</h3>
|
105 |
+
<img src='2.jpeg' width='300'>
|
106 |
+
<h3>Bird Origins</h3>
|
107 |
+
<img src='3.jpeg' width='300'>
|
108 |
+
"""
|
109 |
)
|
110 |
interface.launch()
|