|
import logging |
|
import torch.nn as nn |
|
import torch |
|
import torch.nn.functional as F |
|
from networks import ops |
|
|
|
def conv5x5(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
"""5x5 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=5, stride=stride, |
|
padding=2, groups=groups, bias=False, dilation=dilation) |
|
|
|
|
|
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): |
|
"""3x3 convolution with padding""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, |
|
padding=dilation, groups=groups, bias=False, dilation=dilation) |
|
|
|
|
|
def conv1x1(in_planes, out_planes, stride=1): |
|
"""1x1 convolution""" |
|
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) |
|
|
|
|
|
class BasicBlock(nn.Module): |
|
expansion = 1 |
|
|
|
def __init__(self, inplanes, planes, stride=1, upsample=None, norm_layer=None, large_kernel=False): |
|
super(BasicBlock, self).__init__() |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self.stride = stride |
|
conv = conv5x5 if large_kernel else conv3x3 |
|
|
|
if self.stride > 1: |
|
self.conv1 = ops.SpectralNorm(nn.ConvTranspose2d(inplanes, inplanes, kernel_size=4, stride=2, padding=1, bias=False)) |
|
else: |
|
self.conv1 = ops.SpectralNorm(conv(inplanes, inplanes)) |
|
self.bn1 = norm_layer(inplanes) |
|
self.activation = nn.LeakyReLU(0.2, inplace=True) |
|
self.conv2 = ops.SpectralNorm(conv(inplanes, planes)) |
|
self.bn2 = norm_layer(planes) |
|
self.upsample = upsample |
|
|
|
def forward(self, x): |
|
identity = x |
|
|
|
out = self.conv1(x) |
|
out = self.bn1(out) |
|
out = self.activation(out) |
|
|
|
out = self.conv2(out) |
|
out = self.bn2(out) |
|
|
|
if self.upsample is not None: |
|
identity = self.upsample(x) |
|
|
|
out += identity |
|
out = self.activation(out) |
|
|
|
return out |
|
|
|
class SAM_Decoder_Deep(nn.Module): |
|
def __init__(self, nc, layers, block=BasicBlock, norm_layer=None, large_kernel=False, late_downsample=False): |
|
super(SAM_Decoder_Deep, self).__init__() |
|
self.logger = logging.getLogger("Logger") |
|
if norm_layer is None: |
|
norm_layer = nn.BatchNorm2d |
|
self._norm_layer = norm_layer |
|
self.large_kernel = large_kernel |
|
self.kernel_size = 5 if self.large_kernel else 3 |
|
|
|
|
|
self.inplanes = 256 |
|
self.late_downsample = late_downsample |
|
self.midplanes = 64 if late_downsample else 32 |
|
|
|
self.conv1 = ops.SpectralNorm(nn.ConvTranspose2d(self.midplanes, 32, kernel_size=4, stride=2, padding=1, bias=False)) |
|
self.bn1 = norm_layer(32) |
|
self.leaky_relu = nn.LeakyReLU(0.2, inplace=True) |
|
|
|
self.upsample = nn.UpsamplingNearest2d(scale_factor=2) |
|
self.tanh = nn.Tanh() |
|
|
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2) |
|
self.layer3 = self._make_layer(block, 64, layers[2], stride=2) |
|
self.layer4 = self._make_layer(block, self.midplanes, layers[3], stride=2) |
|
|
|
self.refine_OS1 = nn.Sequential( |
|
nn.Conv2d(32, 32, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2, bias=False), |
|
norm_layer(32), |
|
self.leaky_relu, |
|
nn.Conv2d(32, 1, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2),) |
|
|
|
self.refine_OS4 = nn.Sequential( |
|
nn.Conv2d(64, 32, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2, bias=False), |
|
norm_layer(32), |
|
self.leaky_relu, |
|
nn.Conv2d(32, 1, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2),) |
|
|
|
self.refine_OS8 = nn.Sequential( |
|
nn.Conv2d(128, 32, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2, bias=False), |
|
norm_layer(32), |
|
self.leaky_relu, |
|
nn.Conv2d(32, 1, kernel_size=self.kernel_size, stride=1, padding=self.kernel_size//2),) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.Conv2d): |
|
if hasattr(m, "weight_bar"): |
|
nn.init.xavier_uniform_(m.weight_bar) |
|
else: |
|
nn.init.xavier_uniform_(m.weight) |
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): |
|
nn.init.constant_(m.weight, 1) |
|
nn.init.constant_(m.bias, 0) |
|
|
|
|
|
|
|
|
|
for m in self.modules(): |
|
if isinstance(m, BasicBlock): |
|
nn.init.constant_(m.bn2.weight, 0) |
|
|
|
self.logger.debug(self) |
|
|
|
def _make_layer(self, block, planes, blocks, stride=1): |
|
if blocks == 0: |
|
return nn.Sequential(nn.Identity()) |
|
norm_layer = self._norm_layer |
|
upsample = None |
|
if stride != 1: |
|
upsample = nn.Sequential( |
|
nn.UpsamplingNearest2d(scale_factor=2), |
|
ops.SpectralNorm(conv1x1(self.inplanes + 4, planes * block.expansion)), |
|
norm_layer(planes * block.expansion), |
|
) |
|
elif self.inplanes != planes * block.expansion: |
|
upsample = nn.Sequential( |
|
ops.SpectralNorm(conv1x1(self.inplanes + 4, planes * block.expansion)), |
|
norm_layer(planes * block.expansion), |
|
) |
|
|
|
layers = [block(self.inplanes + 4, planes, stride, upsample, norm_layer, self.large_kernel)] |
|
self.inplanes = planes * block.expansion |
|
for _ in range(1, blocks): |
|
layers.append(block(self.inplanes, planes, norm_layer=norm_layer, large_kernel=self.large_kernel)) |
|
|
|
return nn.Sequential(*layers) |
|
|
|
def forward(self, x_os16, img, mask): |
|
ret = {} |
|
mask_os16 = F.interpolate(mask, x_os16.shape[2:], mode='bilinear', align_corners=False) |
|
img_os16 = F.interpolate(img, x_os16.shape[2:], mode='bilinear', align_corners=False) |
|
|
|
x = self.layer2(torch.cat((x_os16, img_os16, mask_os16), dim=1)) |
|
|
|
x_os8 = self.refine_OS8(x) |
|
|
|
mask_os8 = F.interpolate(mask, x.shape[2:], mode='bilinear', align_corners=False) |
|
img_os8 = F.interpolate(img, x.shape[2:], mode='bilinear', align_corners=False) |
|
|
|
x = self.layer3(torch.cat((x, img_os8, mask_os8), dim=1)) |
|
|
|
x_os4 = self.refine_OS4(x) |
|
|
|
mask_os4 = F.interpolate(mask, x.shape[2:], mode='bilinear', align_corners=False) |
|
img_os4 = F.interpolate(img, x.shape[2:], mode='bilinear', align_corners=False) |
|
|
|
x = self.layer4(torch.cat((x, img_os4, mask_os4), dim=1)) |
|
x = self.conv1(x) |
|
x = self.bn1(x) |
|
x = self.leaky_relu(x) |
|
|
|
x_os1 = self.refine_OS1(x) |
|
|
|
x_os4 = F.interpolate(x_os4, scale_factor=4.0, mode='bilinear', align_corners=False) |
|
x_os8 = F.interpolate(x_os8, scale_factor=8.0, mode='bilinear', align_corners=False) |
|
|
|
x_os1 = (torch.tanh(x_os1) + 1.0) / 2.0 |
|
x_os4 = (torch.tanh(x_os4) + 1.0) / 2.0 |
|
x_os8 = (torch.tanh(x_os8) + 1.0) / 2.0 |
|
|
|
mask_os1 = F.interpolate(mask, x_os1.shape[2:], mode='bilinear', align_corners=False) |
|
|
|
ret['alpha_os1'] = x_os1 |
|
ret['alpha_os4'] = x_os4 |
|
ret['alpha_os8'] = x_os8 |
|
ret['mask'] = mask_os1 |
|
|
|
return ret |