Spaces:
Running
Running
# import os | |
# from langchain.embeddings import HuggingFaceEmbeddings | |
# from langchain.vectorstores.chroma import Chroma | |
# from langchain_community.cross_encoders import HuggingFaceCrossEncoder | |
# import time | |
# from langchain.retrievers import ContextualCompressionRetriever | |
# from langchain.retrievers.document_compressors import CrossEncoderReranker | |
# from bot.llm_client import Mistral | |
# os.environ["SERPER_API_KEY"] = 'TOKEN' | |
# CHROMA_PATH = "final_test/chroma_test" | |
# CHROMA_PATH = "final_test/chroma_test2" | |
# def load_embedding_model(model_path : str): | |
# start_time = time.time() | |
# encode_kwargs = {"normalize_embeddings": True} | |
# local_embedding = HuggingFaceEmbeddings( | |
# model_name=model_path, | |
# cache_folder="./models", | |
# encode_kwargs=encode_kwargs | |
# ) | |
# end_time = time.time() | |
# print(f'model load time {round(end_time - start_time, 0)} second') | |
# return local_embedding | |
# embedding = load_embedding_model(model_path="intfloat/multilingual-e5-large") | |
# reranker_model = HuggingFaceCrossEncoder(model_name="BAAI/bge-reranker-v2-m3") | |
# db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding).as_retriever(search_kwargs={"k": 20}) | |
# model_llm_rag = Mistral() | |