lzyhha commited on
Commit
af44a4b
·
1 Parent(s): a801f0e
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +52 -51
  2. data/degradation_toolkit/__init__.py +0 -0
  3. data/degradation_toolkit/add_degradation_various.py +401 -0
  4. data/degradation_toolkit/degradation_utils.py +232 -0
  5. data/degradation_toolkit/frost/frost1.png +3 -0
  6. data/degradation_toolkit/frost/frost2.png +3 -0
  7. data/degradation_toolkit/frost/frost3.png +3 -0
  8. data/degradation_toolkit/frost/frost4.jpg +3 -0
  9. data/degradation_toolkit/frost/frost5.jpg +3 -0
  10. data/degradation_toolkit/frost/frost6.jpg +3 -0
  11. data/degradation_toolkit/image_operators.py +420 -0
  12. data/degradation_toolkit/x_distortion/__init__.py +120 -0
  13. data/degradation_toolkit/x_distortion/blur.py +155 -0
  14. data/degradation_toolkit/x_distortion/brightness.py +150 -0
  15. data/degradation_toolkit/x_distortion/compression.py +78 -0
  16. data/degradation_toolkit/x_distortion/contrast.py +74 -0
  17. data/degradation_toolkit/x_distortion/helper.py +171 -0
  18. data/degradation_toolkit/x_distortion/noise.py +117 -0
  19. data/degradation_toolkit/x_distortion/oversharpen.py +31 -0
  20. data/degradation_toolkit/x_distortion/pixelate.py +21 -0
  21. data/degradation_toolkit/x_distortion/quantization.py +68 -0
  22. data/degradation_toolkit/x_distortion/saturate.py +75 -0
  23. data/degradation_toolkit/x_distortion/spatter.py +74 -0
  24. imgproc.py → data/imgproc.py +0 -0
  25. examples/__init__.py +13 -0
  26. examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9.jpg +3 -0
  27. examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9_ben2-background-removal.jpg +3 -0
  28. examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9_canny_100_200_512.jpg +3 -0
  29. examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9_depth-anything-v2_Large.jpg +3 -0
  30. examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9_dsine_normal_map.jpg +3 -0
  31. examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9_hed_512.jpg +3 -0
  32. examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9_sam2_mask.jpg +3 -0
  33. examples/examples/0fdaecdb7906a1bf0d6e202363f15de3/0fdaecdb7906a1bf0d6e202363f15de3.jpg +3 -0
  34. examples/examples/0fdaecdb7906a1bf0d6e202363f15de3/0fdaecdb7906a1bf0d6e202363f15de3_instantx-style_0.jpg +3 -0
  35. examples/examples/0fdaecdb7906a1bf0d6e202363f15de3/0fdaecdb7906a1bf0d6e202363f15de3_instantx-style_0_style.jpg +3 -0
  36. examples/examples/0fdaecdb7906a1bf0d6e202363f15de3/0fdaecdb7906a1bf0d6e202363f15de3_qwen2_5_mask.jpg +3 -0
  37. examples/examples/10d7dcae5240b8cc8c9427e876b4f462/10d7dcae5240b8cc8c9427e876b4f462.jpg +3 -0
  38. examples/examples/10d7dcae5240b8cc8c9427e876b4f462/10d7dcae5240b8cc8c9427e876b4f462_instantx-style_0.jpg +3 -0
  39. examples/examples/10d7dcae5240b8cc8c9427e876b4f462/10d7dcae5240b8cc8c9427e876b4f462_instantx-style_0_style.jpg +3 -0
  40. examples/examples/10d7dcae5240b8cc8c9427e876b4f462/10d7dcae5240b8cc8c9427e876b4f462_qwen2_5_mask.jpg +3 -0
  41. examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3.jpg +3 -0
  42. examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3_canny_100_200_512.jpg +3 -0
  43. examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3_depth-anything-v2_Large.jpg +3 -0
  44. examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3_dsine_normal_map.jpg +3 -0
  45. examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3_hed_512.jpg +3 -0
  46. examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3_openpose_fullres_nohand.jpg +3 -0
  47. examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3_sam2_mask.jpg +3 -0
  48. examples/examples/2c4e256fa512cb7e7f433f4c7f9101de/2c4e256fa512cb7e7f433f4c7f9101de.jpg +3 -0
  49. examples/examples/2c4e256fa512cb7e7f433f4c7f9101de/2c4e256fa512cb7e7f433f4c7f9101de_ben2-background-removal.jpg +3 -0
  50. examples/examples/2c4e256fa512cb7e7f433f4c7f9101de/2c4e256fa512cb7e7f433f4c7f9101de_canny_100_200_512.jpg +3 -0
app.py CHANGED
@@ -1,8 +1,8 @@
1
  import argparse
2
- import spaces
3
  from visualcloze import VisualClozeModel
4
  import gradio as gr
5
- import demo_tasks
6
  from functools import partial
7
  from data.prefix_instruction import get_layout_instruction
8
  from huggingface_hub import snapshot_download
@@ -15,11 +15,8 @@ default_grid_w = 3
15
  default_upsampling_noise = 0.4
16
  default_steps = 30
17
 
18
- GUIDANCE = """
19
-
20
 
21
- ## 📧 Contact:
22
- Need help or have questions? Contact us at: lizhongyu [AT] mail.nankai.edu.cn.
23
 
24
  ## 📋 Quick Start Guide:
25
  1. Adjust **Number of In-context Examples**, 0 disables in-context learning.
@@ -41,6 +38,7 @@ When generating three images in a 3x4 grid, i.e., Image to Depth + Normal + Hed,
41
  the runtime is approximately **110s**.
42
  **Deploying locally with an 80G A100 can reduce the runtime by more than half.**
43
 
 
44
  """
45
 
46
  CITATION = r"""
@@ -53,13 +51,17 @@ If our work is useful for your research, please consider citing:
53
  @article{li2025visualcloze,
54
  title={VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning},
55
  author={Li, Zhong-Yu and Du, ruoyi and Yan, Juncheng and Zhuo, Le and Li, Zhen and Gao, Peng and Ma, Zhanyu and Cheng, Ming-Ming},
56
- booktitle={arXiv preprint arxiv:},
57
  year={2025}
58
  }
59
  ```
60
  📋 **License**
61
  <br>
62
- This project is licensed under xxx.
 
 
 
 
63
  """
64
 
65
  NOTE = r"""
@@ -150,7 +152,7 @@ def create_demo(model):
150
  steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=default_steps, step=1)
151
  cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=50.0, value=30, step=1)
152
  upsampling_steps = gr.Slider(label="Upsampling steps (SDEdit)", minimum=1, maximum=100.0, value=10, step=1)
153
- upsampling_noise = gr.Slider(label="Upsampling noise (SDEdit)", minimum=0, maximum=1.0, value=default_upsampling_noise, step=0.01)
154
 
155
  gr.Markdown(CITATION)
156
 
@@ -170,70 +172,70 @@ def create_demo(model):
170
  gr.Markdown("# Task Examples")
171
  text_dense_prediction_tasks = gr.Textbox(label="Task", visible=False)
172
  dense_prediction_tasks = gr.Dataset(
173
- samples=demo_tasks.dense_prediction_text,
174
  label='Dense Prediction',
175
  samples_per_page=1000,
176
  components=[text_dense_prediction_tasks])
177
 
178
  text_conditional_generation_tasks = gr.Textbox(label="Task", visible=False)
179
  conditional_generation_tasks = gr.Dataset(
180
- samples=demo_tasks.conditional_generation_text,
181
  label='Conditional Generation',
182
  samples_per_page=1000,
183
  components=[text_conditional_generation_tasks])
184
 
185
  text_image_restoration_tasks = gr.Textbox(label="Task", visible=False)
186
  image_restoration_tasks = gr.Dataset(
187
- samples=demo_tasks.image_restoration_text,
188
  label='Image Restoration',
189
  samples_per_page=1000,
190
  components=[text_image_restoration_tasks])
191
 
192
  text_style_transfer_tasks = gr.Textbox(label="Task", visible=False)
193
  style_transfer_tasks = gr.Dataset(
194
- samples=demo_tasks.style_transfer_text,
195
  label='Style Transfer',
196
  samples_per_page=1000,
197
  components=[text_style_transfer_tasks])
198
 
199
  text_style_condition_fusion_tasks = gr.Textbox(label="Task", visible=False)
200
  style_condition_fusion_tasks = gr.Dataset(
201
- samples=demo_tasks.style_condition_fusion_text,
202
  label='Style Condition Fusion',
203
  samples_per_page=1000,
204
  components=[text_style_condition_fusion_tasks])
205
 
206
  text_tryon_tasks = gr.Textbox(label="Task", visible=False)
207
  tryon_tasks = gr.Dataset(
208
- samples=demo_tasks.tryon_text,
209
  label='Virtual Try-On',
210
  samples_per_page=1000,
211
  components=[text_tryon_tasks])
212
 
213
  text_relighting_tasks = gr.Textbox(label="Task", visible=False)
214
  relighting_tasks = gr.Dataset(
215
- samples=demo_tasks.relighting_text,
216
  label='Relighting',
217
  samples_per_page=1000,
218
  components=[text_relighting_tasks])
219
 
220
  text_photodoodle_tasks = gr.Textbox(label="Task", visible=False)
221
  photodoodle_tasks = gr.Dataset(
222
- samples=demo_tasks.photodoodle_text,
223
  label='Photodoodle',
224
  samples_per_page=1000,
225
  components=[text_photodoodle_tasks])
226
 
227
  text_editing_tasks = gr.Textbox(label="Task", visible=False)
228
  editing_tasks = gr.Dataset(
229
- samples=demo_tasks.editing_text,
230
  label='Editing',
231
  samples_per_page=1000,
232
  components=[text_editing_tasks])
233
 
234
  text_unseen_tasks = gr.Textbox(label="Task", visible=False)
235
  unseen_tasks = gr.Dataset(
236
- samples=demo_tasks.unseen_tasks_text,
237
  label='Unseen Tasks (May produce unstable effects)',
238
  samples_per_page=1000,
239
  components=[text_unseen_tasks])
@@ -241,42 +243,42 @@ def create_demo(model):
241
  gr.Markdown("# Subject-driven Tasks Examples")
242
  text_subject_driven_tasks = gr.Textbox(label="Task", visible=False)
243
  subject_driven_tasks = gr.Dataset(
244
- samples=demo_tasks.subject_driven_text,
245
  label='Subject-driven Generation',
246
  samples_per_page=1000,
247
  components=[text_subject_driven_tasks])
248
 
249
  text_condition_subject_fusion_tasks = gr.Textbox(label="Task", visible=False)
250
  condition_subject_fusion_tasks = gr.Dataset(
251
- samples=demo_tasks.condition_subject_fusion_text,
252
  label='Condition+Subject Fusion',
253
  samples_per_page=1000,
254
  components=[text_condition_subject_fusion_tasks])
255
 
256
  text_style_transfer_with_subject_tasks = gr.Textbox(label="Task", visible=False)
257
  style_transfer_with_subject_tasks = gr.Dataset(
258
- samples=demo_tasks.style_transfer_with_subject_text,
259
  label='Style Transfer with Subject',
260
  samples_per_page=1000,
261
  components=[text_style_transfer_with_subject_tasks])
262
 
263
  text_condition_subject_style_fusion_tasks = gr.Textbox(label="Task", visible=False)
264
  condition_subject_style_fusion_tasks = gr.Dataset(
265
- samples=demo_tasks.condition_subject_style_fusion_text,
266
  label='Condition+Subject+Style Fusion',
267
  samples_per_page=1000,
268
  components=[text_condition_subject_style_fusion_tasks])
269
 
270
  text_editing_with_subject_tasks = gr.Textbox(label="Task", visible=False)
271
  editing_with_subject_tasks = gr.Dataset(
272
- samples=demo_tasks.editing_with_subject_text,
273
  label='Editing with Subject',
274
  samples_per_page=1000,
275
  components=[text_editing_with_subject_tasks])
276
 
277
  text_image_restoration_with_subject_tasks = gr.Textbox(label="Task", visible=False)
278
  image_restoration_with_subject_tasks = gr.Dataset(
279
- samples=demo_tasks.image_restoration_with_subject_text,
280
  label='Image Restoration with Subject',
281
  samples_per_page=1000,
282
  components=[text_image_restoration_with_subject_tasks])
@@ -318,7 +320,6 @@ def create_demo(model):
318
  def generate_image(*inputs):
319
  images = []
320
  if grid_h.value + 1 != model.grid_h or grid_w.value != model.grid_w:
321
- print(grid_h.value, grid_w.value, model.grid_h, model.grid_w, type(grid_h.value), type(model.grid_h))
322
  raise gr.Error('Please wait for the loading to complete.')
323
  for i in range(model.grid_h):
324
  images.append([])
@@ -337,7 +338,7 @@ def create_demo(model):
337
  upsampling_steps=upsampling_steps, upsampling_noise=upsampling_noise
338
  )
339
  except Exception as e:
340
- raise gr.Error('Process error. Possible that the task examples have not finished loading yet. Error: ' + str(e))
341
 
342
  output = gr.update(
343
  elem_id='output_gallery',
@@ -375,104 +376,104 @@ def create_demo(model):
375
  update_grid(cur_hrid_h, cur_hrid_w)
376
  output = gr.update(
377
  elem_id='output_gallery',
378
- value=output,
379
- columns=min(len(output), 2),
380
- rows=int(len(output) / 2 + 0.5))
381
  return [output] + current_example + state
382
 
383
  dense_prediction_tasks.click(
384
- partial(process_tasks, func=demo_tasks.process_dense_prediction_tasks),
385
  inputs=[dense_prediction_tasks],
386
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
387
  show_progress="full",
388
  show_progress_on=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps] + [generate_btn])
389
 
390
  conditional_generation_tasks.click(
391
- partial(process_tasks, func=demo_tasks.process_conditional_generation_tasks),
392
  inputs=[conditional_generation_tasks],
393
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
394
  show_progress="full")
395
 
396
  image_restoration_tasks.click(
397
- partial(process_tasks, func=demo_tasks.process_image_restoration_tasks),
398
  inputs=[image_restoration_tasks],
399
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
400
  show_progress="full")
401
 
402
  style_transfer_tasks.click(
403
- partial(process_tasks, func=demo_tasks.process_style_transfer_tasks),
404
  inputs=[style_transfer_tasks],
405
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
406
  show_progress="full")
407
 
408
  style_condition_fusion_tasks.click(
409
- partial(process_tasks, func=demo_tasks.process_style_condition_fusion_tasks),
410
  inputs=[style_condition_fusion_tasks],
411
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
412
  show_progress="full")
413
 
414
  relighting_tasks.click(
415
- partial(process_tasks, func=demo_tasks.process_relighting_tasks),
416
  inputs=[relighting_tasks],
417
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
418
  show_progress="full")
419
 
420
  tryon_tasks.click(
421
- partial(process_tasks, func=demo_tasks.process_tryon_tasks),
422
  inputs=[tryon_tasks],
423
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
424
  show_progress="full")
425
 
426
  photodoodle_tasks.click(
427
- partial(process_tasks, func=demo_tasks.process_photodoodle_tasks),
428
  inputs=[photodoodle_tasks],
429
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
430
  show_progress="full")
431
 
432
  editing_tasks.click(
433
- partial(process_tasks, func=demo_tasks.process_editing_tasks),
434
  inputs=[editing_tasks],
435
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
436
  show_progress="full")
437
 
438
  unseen_tasks.click(
439
- partial(process_tasks, func=demo_tasks.process_unseen_tasks),
440
  inputs=[unseen_tasks],
441
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
442
  show_progress="full")
443
 
444
  subject_driven_tasks.click(
445
- partial(process_tasks, func=demo_tasks.process_subject_driven_tasks),
446
  inputs=[subject_driven_tasks],
447
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
448
  show_progress="full")
449
 
450
  style_transfer_with_subject_tasks.click(
451
- partial(process_tasks, func=demo_tasks.process_style_transfer_with_subject_tasks),
452
  inputs=[style_transfer_with_subject_tasks],
453
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
454
  show_progress="full")
455
 
456
  condition_subject_fusion_tasks.click(
457
- partial(process_tasks, func=demo_tasks.process_condition_subject_fusion_tasks),
458
  inputs=[condition_subject_fusion_tasks],
459
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
460
  show_progress="full")
461
 
462
  condition_subject_style_fusion_tasks.click(
463
- partial(process_tasks, func=demo_tasks.process_condition_subject_style_fusion_tasks),
464
  inputs=[condition_subject_style_fusion_tasks],
465
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
466
  show_progress="full")
467
 
468
  editing_with_subject_tasks.click(
469
- partial(process_tasks, func=demo_tasks.process_editing_with_subject_tasks),
470
  inputs=[editing_with_subject_tasks],
471
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
472
  show_progress="full")
473
 
474
  image_restoration_with_subject_tasks.click(
475
- partial(process_tasks, func=demo_tasks.process_image_restoration_with_subject_tasks),
476
  inputs=[image_restoration_with_subject_tasks],
477
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
478
  show_progress="full")
@@ -496,7 +497,7 @@ def create_demo(model):
496
 
497
 
498
  # @spaces.GPU(duration=120)
499
- @spaces.GPU(duration=10)
500
  def generate(
501
  images,
502
  prompts,
@@ -514,7 +515,7 @@ def generate(
514
 
515
  def parse_args():
516
  parser = argparse.ArgumentParser()
517
- parser.add_argument("--model_path", type=str, default="models/visualcloze-384-lora.pth")
518
  parser.add_argument("--precision", type=str, choices=["fp32", "bf16", "fp16"], default="bf16")
519
  parser.add_argument("--resolution", type=int, default=384)
520
  return parser.parse_args()
@@ -523,7 +524,7 @@ def parse_args():
523
  if __name__ == "__main__":
524
  args = parse_args()
525
 
526
- # snapshot_download(repo_id="VisualCloze/VisualCloze", repo_type="model", local_dir="models")
527
 
528
  # Initialize model
529
  model = VisualClozeModel(resolution=args.resolution, model_path=args.model_path, precision=args.precision)
@@ -532,5 +533,5 @@ if __name__ == "__main__":
532
  demo = create_demo(model)
533
 
534
  # Start Gradio server
535
- demo.launch()
536
- # demo.launch(share=False, server_port=10050, server_name="0.0.0.0")
 
1
  import argparse
2
+ # import spaces
3
  from visualcloze import VisualClozeModel
4
  import gradio as gr
5
+ import examples
6
  from functools import partial
7
  from data.prefix_instruction import get_layout_instruction
8
  from huggingface_hub import snapshot_download
 
15
  default_upsampling_noise = 0.4
16
  default_steps = 30
17
 
 
 
18
 
19
+ GUIDANCE = """
 
20
 
21
  ## 📋 Quick Start Guide:
22
  1. Adjust **Number of In-context Examples**, 0 disables in-context learning.
 
38
  the runtime is approximately **110s**.
39
  **Deploying locally with an 80G A100 can reduce the runtime by more than half.**
40
 
41
+ ### Note: For better quality, you can deploy the demo locally using the [model](https://huggingface.co/VisualCloze/VisualCloze/blob/main/visualcloze-512-lora.pth), which supports a higher resolution than this online demo, by following the instructions in the [GitHub repository](https://github.com/lzyhha/VisualCloze/tree/main?tab=readme-ov-file#2-web-demo-gradio).
42
  """
43
 
44
  CITATION = r"""
 
51
  @article{li2025visualcloze,
52
  title={VisualCloze: A Universal Image Generation Framework via Visual In-Context Learning},
53
  author={Li, Zhong-Yu and Du, ruoyi and Yan, Juncheng and Zhuo, Le and Li, Zhen and Gao, Peng and Ma, Zhanyu and Cheng, Ming-Ming},
54
+ journal={arXiv preprint arxiv:},
55
  year={2025}
56
  }
57
  ```
58
  📋 **License**
59
  <br>
60
+ This project is licensed under apache-2.0.
61
+
62
+ 📧 **Contact**
63
+ <br>
64
+ Need help or have questions? Contact us at: lizhongyu [AT] mail.nankai.edu.cn.
65
  """
66
 
67
  NOTE = r"""
 
152
  steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=default_steps, step=1)
153
  cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=50.0, value=30, step=1)
154
  upsampling_steps = gr.Slider(label="Upsampling steps (SDEdit)", minimum=1, maximum=100.0, value=10, step=1)
155
+ upsampling_noise = gr.Slider(label="Upsampling noise (SDEdit)", minimum=0, maximum=1.0, value=default_upsampling_noise, step=0.05)
156
 
157
  gr.Markdown(CITATION)
158
 
 
172
  gr.Markdown("# Task Examples")
173
  text_dense_prediction_tasks = gr.Textbox(label="Task", visible=False)
174
  dense_prediction_tasks = gr.Dataset(
175
+ samples=examples.dense_prediction_text,
176
  label='Dense Prediction',
177
  samples_per_page=1000,
178
  components=[text_dense_prediction_tasks])
179
 
180
  text_conditional_generation_tasks = gr.Textbox(label="Task", visible=False)
181
  conditional_generation_tasks = gr.Dataset(
182
+ samples=examples.conditional_generation_text,
183
  label='Conditional Generation',
184
  samples_per_page=1000,
185
  components=[text_conditional_generation_tasks])
186
 
187
  text_image_restoration_tasks = gr.Textbox(label="Task", visible=False)
188
  image_restoration_tasks = gr.Dataset(
189
+ samples=examples.image_restoration_text,
190
  label='Image Restoration',
191
  samples_per_page=1000,
192
  components=[text_image_restoration_tasks])
193
 
194
  text_style_transfer_tasks = gr.Textbox(label="Task", visible=False)
195
  style_transfer_tasks = gr.Dataset(
196
+ samples=examples.style_transfer_text,
197
  label='Style Transfer',
198
  samples_per_page=1000,
199
  components=[text_style_transfer_tasks])
200
 
201
  text_style_condition_fusion_tasks = gr.Textbox(label="Task", visible=False)
202
  style_condition_fusion_tasks = gr.Dataset(
203
+ samples=examples.style_condition_fusion_text,
204
  label='Style Condition Fusion',
205
  samples_per_page=1000,
206
  components=[text_style_condition_fusion_tasks])
207
 
208
  text_tryon_tasks = gr.Textbox(label="Task", visible=False)
209
  tryon_tasks = gr.Dataset(
210
+ samples=examples.tryon_text,
211
  label='Virtual Try-On',
212
  samples_per_page=1000,
213
  components=[text_tryon_tasks])
214
 
215
  text_relighting_tasks = gr.Textbox(label="Task", visible=False)
216
  relighting_tasks = gr.Dataset(
217
+ samples=examples.relighting_text,
218
  label='Relighting',
219
  samples_per_page=1000,
220
  components=[text_relighting_tasks])
221
 
222
  text_photodoodle_tasks = gr.Textbox(label="Task", visible=False)
223
  photodoodle_tasks = gr.Dataset(
224
+ samples=examples.photodoodle_text,
225
  label='Photodoodle',
226
  samples_per_page=1000,
227
  components=[text_photodoodle_tasks])
228
 
229
  text_editing_tasks = gr.Textbox(label="Task", visible=False)
230
  editing_tasks = gr.Dataset(
231
+ samples=examples.editing_text,
232
  label='Editing',
233
  samples_per_page=1000,
234
  components=[text_editing_tasks])
235
 
236
  text_unseen_tasks = gr.Textbox(label="Task", visible=False)
237
  unseen_tasks = gr.Dataset(
238
+ samples=examples.unseen_tasks_text,
239
  label='Unseen Tasks (May produce unstable effects)',
240
  samples_per_page=1000,
241
  components=[text_unseen_tasks])
 
243
  gr.Markdown("# Subject-driven Tasks Examples")
244
  text_subject_driven_tasks = gr.Textbox(label="Task", visible=False)
245
  subject_driven_tasks = gr.Dataset(
246
+ samples=examples.subject_driven_text,
247
  label='Subject-driven Generation',
248
  samples_per_page=1000,
249
  components=[text_subject_driven_tasks])
250
 
251
  text_condition_subject_fusion_tasks = gr.Textbox(label="Task", visible=False)
252
  condition_subject_fusion_tasks = gr.Dataset(
253
+ samples=examples.condition_subject_fusion_text,
254
  label='Condition+Subject Fusion',
255
  samples_per_page=1000,
256
  components=[text_condition_subject_fusion_tasks])
257
 
258
  text_style_transfer_with_subject_tasks = gr.Textbox(label="Task", visible=False)
259
  style_transfer_with_subject_tasks = gr.Dataset(
260
+ samples=examples.style_transfer_with_subject_text,
261
  label='Style Transfer with Subject',
262
  samples_per_page=1000,
263
  components=[text_style_transfer_with_subject_tasks])
264
 
265
  text_condition_subject_style_fusion_tasks = gr.Textbox(label="Task", visible=False)
266
  condition_subject_style_fusion_tasks = gr.Dataset(
267
+ samples=examples.condition_subject_style_fusion_text,
268
  label='Condition+Subject+Style Fusion',
269
  samples_per_page=1000,
270
  components=[text_condition_subject_style_fusion_tasks])
271
 
272
  text_editing_with_subject_tasks = gr.Textbox(label="Task", visible=False)
273
  editing_with_subject_tasks = gr.Dataset(
274
+ samples=examples.editing_with_subject_text,
275
  label='Editing with Subject',
276
  samples_per_page=1000,
277
  components=[text_editing_with_subject_tasks])
278
 
279
  text_image_restoration_with_subject_tasks = gr.Textbox(label="Task", visible=False)
280
  image_restoration_with_subject_tasks = gr.Dataset(
281
+ samples=examples.image_restoration_with_subject_text,
282
  label='Image Restoration with Subject',
283
  samples_per_page=1000,
284
  components=[text_image_restoration_with_subject_tasks])
 
320
  def generate_image(*inputs):
321
  images = []
322
  if grid_h.value + 1 != model.grid_h or grid_w.value != model.grid_w:
 
323
  raise gr.Error('Please wait for the loading to complete.')
324
  for i in range(model.grid_h):
325
  images.append([])
 
338
  upsampling_steps=upsampling_steps, upsampling_noise=upsampling_noise
339
  )
340
  except Exception as e:
341
+ raise gr.Error('Process error. Possible that the task examples have not finished loading yet. Error: ' + e)
342
 
343
  output = gr.update(
344
  elem_id='output_gallery',
 
376
  update_grid(cur_hrid_h, cur_hrid_w)
377
  output = gr.update(
378
  elem_id='output_gallery',
379
+ value=[o for o, m in zip(output, mask) if m == 1],
380
+ columns=min(sum(mask), 2),
381
+ rows=int(sum(mask) / 2 + 0.5))
382
  return [output] + current_example + state
383
 
384
  dense_prediction_tasks.click(
385
+ partial(process_tasks, func=examples.process_dense_prediction_tasks),
386
  inputs=[dense_prediction_tasks],
387
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
388
  show_progress="full",
389
  show_progress_on=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps] + [generate_btn])
390
 
391
  conditional_generation_tasks.click(
392
+ partial(process_tasks, func=examples.process_conditional_generation_tasks),
393
  inputs=[conditional_generation_tasks],
394
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
395
  show_progress="full")
396
 
397
  image_restoration_tasks.click(
398
+ partial(process_tasks, func=examples.process_image_restoration_tasks),
399
  inputs=[image_restoration_tasks],
400
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
401
  show_progress="full")
402
 
403
  style_transfer_tasks.click(
404
+ partial(process_tasks, func=examples.process_style_transfer_tasks),
405
  inputs=[style_transfer_tasks],
406
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
407
  show_progress="full")
408
 
409
  style_condition_fusion_tasks.click(
410
+ partial(process_tasks, func=examples.process_style_condition_fusion_tasks),
411
  inputs=[style_condition_fusion_tasks],
412
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
413
  show_progress="full")
414
 
415
  relighting_tasks.click(
416
+ partial(process_tasks, func=examples.process_relighting_tasks),
417
  inputs=[relighting_tasks],
418
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
419
  show_progress="full")
420
 
421
  tryon_tasks.click(
422
+ partial(process_tasks, func=examples.process_tryon_tasks),
423
  inputs=[tryon_tasks],
424
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
425
  show_progress="full")
426
 
427
  photodoodle_tasks.click(
428
+ partial(process_tasks, func=examples.process_photodoodle_tasks),
429
  inputs=[photodoodle_tasks],
430
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
431
  show_progress="full")
432
 
433
  editing_tasks.click(
434
+ partial(process_tasks, func=examples.process_editing_tasks),
435
  inputs=[editing_tasks],
436
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
437
  show_progress="full")
438
 
439
  unseen_tasks.click(
440
+ partial(process_tasks, func=examples.process_unseen_tasks),
441
  inputs=[unseen_tasks],
442
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
443
  show_progress="full")
444
 
445
  subject_driven_tasks.click(
446
+ partial(process_tasks, func=examples.process_subject_driven_tasks),
447
  inputs=[subject_driven_tasks],
448
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
449
  show_progress="full")
450
 
451
  style_transfer_with_subject_tasks.click(
452
+ partial(process_tasks, func=examples.process_style_transfer_with_subject_tasks),
453
  inputs=[style_transfer_with_subject_tasks],
454
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
455
  show_progress="full")
456
 
457
  condition_subject_fusion_tasks.click(
458
+ partial(process_tasks, func=examples.process_condition_subject_fusion_tasks),
459
  inputs=[condition_subject_fusion_tasks],
460
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
461
  show_progress="full")
462
 
463
  condition_subject_style_fusion_tasks.click(
464
+ partial(process_tasks, func=examples.process_condition_subject_style_fusion_tasks),
465
  inputs=[condition_subject_style_fusion_tasks],
466
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
467
  show_progress="full")
468
 
469
  editing_with_subject_tasks.click(
470
+ partial(process_tasks, func=examples.process_editing_with_subject_tasks),
471
  inputs=[editing_with_subject_tasks],
472
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
473
  show_progress="full")
474
 
475
  image_restoration_with_subject_tasks.click(
476
+ partial(process_tasks, func=examples.process_image_restoration_with_subject_tasks),
477
  inputs=[image_restoration_with_subject_tasks],
478
  outputs=[output_gallery] + all_image_inputs + [grid_h, grid_w, layout_prompt, task_prompt, content_prompt, upsampling_noise, steps],
479
  show_progress="full")
 
497
 
498
 
499
  # @spaces.GPU(duration=120)
500
+ # @spaces.GPU(duration=10)
501
  def generate(
502
  images,
503
  prompts,
 
515
 
516
  def parse_args():
517
  parser = argparse.ArgumentParser()
518
+ parser.add_argument("--model_path", type=str, default="checkpoints/visualcloze-384-lora.pth")
519
  parser.add_argument("--precision", type=str, choices=["fp32", "bf16", "fp16"], default="bf16")
520
  parser.add_argument("--resolution", type=int, default=384)
521
  return parser.parse_args()
 
524
  if __name__ == "__main__":
525
  args = parse_args()
526
 
527
+ # snapshot_download(repo_id="VisualCloze/VisualCloze", repo_type="model", local_dir="checkpoints")
528
 
529
  # Initialize model
530
  model = VisualClozeModel(resolution=args.resolution, model_path=args.model_path, precision=args.precision)
 
533
  demo = create_demo(model)
534
 
535
  # Start Gradio server
536
+ # demo.launch()
537
+ demo.launch(share=False, server_port=10050, server_name="0.0.0.0")
data/degradation_toolkit/__init__.py ADDED
File without changes
data/degradation_toolkit/add_degradation_various.py ADDED
@@ -0,0 +1,401 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import random
4
+ import cv2
5
+ import math
6
+ from scipy import special
7
+ from skimage import restoration
8
+
9
+ import torch
10
+ from torch.nn import functional as F
11
+ from torchvision.utils import make_grid
12
+
13
+
14
+ def uint2single(img):
15
+ return np.float32(img/255.)
16
+
17
+
18
+ def single2uint(img):
19
+ return np.uint8((img.clip(0, 1)*255.).round())
20
+
21
+
22
+ def img2tensor(imgs, bgr2rgb=True, float32=True):
23
+ """Numpy array to tensor.
24
+ Args:
25
+ imgs (list[ndarray] | ndarray): Input images.
26
+ bgr2rgb (bool): Whether to change bgr to rgb.
27
+ float32 (bool): Whether to change to float32.
28
+ Returns:
29
+ list[tensor] | tensor: Tensor images. If returned results only have
30
+ one element, just return tensor.
31
+ """
32
+
33
+ def _totensor(img, bgr2rgb, float32):
34
+ if img.shape[2] == 3 and bgr2rgb:
35
+ if img.dtype == 'float64':
36
+ img = img.astype('float32')
37
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
38
+ img = torch.from_numpy(img.transpose(2, 0, 1))
39
+ if float32:
40
+ img = img.float()
41
+ return img
42
+
43
+ if isinstance(imgs, list):
44
+ return [_totensor(img, bgr2rgb, float32) for img in imgs]
45
+ else:
46
+ return _totensor(imgs, bgr2rgb, float32)
47
+
48
+
49
+ def tensor2img(tensor, rgb2bgr=True, out_type=np.uint8, min_max=(0, 1)):
50
+ """Convert torch Tensors into image numpy arrays.
51
+ After clamping to [min, max], values will be normalized to [0, 1].
52
+ Args:
53
+ tensor (Tensor or list[Tensor]): Accept shapes:
54
+ 1) 4D mini-batch Tensor of shape (B x 3/1 x H x W);
55
+ 2) 3D Tensor of shape (3/1 x H x W);
56
+ 3) 2D Tensor of shape (H x W).
57
+ Tensor channel should be in RGB order.
58
+ rgb2bgr (bool): Whether to change rgb to bgr.
59
+ out_type (numpy type): output types. If ``np.uint8``, transform outputs
60
+ to uint8 type with range [0, 255]; otherwise, float type with
61
+ range [0, 1]. Default: ``np.uint8``.
62
+ min_max (tuple[int]): min and max values for clamp.
63
+ Returns:
64
+ (Tensor or list): 3D ndarray of shape (H x W x C) OR 2D ndarray of
65
+ shape (H x W). The channel order is BGR.
66
+ """
67
+ if not (torch.is_tensor(tensor) or (isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
68
+ raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
69
+
70
+ if torch.is_tensor(tensor):
71
+ tensor = [tensor]
72
+ result = []
73
+ for _tensor in tensor:
74
+ _tensor = _tensor.squeeze(0).float().detach().cpu().clamp_(*min_max)
75
+ _tensor = (_tensor - min_max[0]) / (min_max[1] - min_max[0])
76
+
77
+ n_dim = _tensor.dim()
78
+ if n_dim == 4:
79
+ img_np = make_grid(_tensor, nrow=int(math.sqrt(_tensor.size(0))), normalize=False).numpy()
80
+ img_np = img_np.transpose(1, 2, 0)
81
+ if rgb2bgr:
82
+ img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
83
+ elif n_dim == 3:
84
+ img_np = _tensor.numpy()
85
+ img_np = img_np.transpose(1, 2, 0)
86
+ if img_np.shape[2] == 1: # gray image
87
+ img_np = np.squeeze(img_np, axis=2)
88
+ else:
89
+ if rgb2bgr:
90
+ img_np = cv2.cvtColor(img_np, cv2.COLOR_RGB2BGR)
91
+ elif n_dim == 2:
92
+ img_np = _tensor.numpy()
93
+ else:
94
+ raise TypeError(f'Only support 4D, 3D or 2D tensor. But received with dimension: {n_dim}')
95
+ if out_type == np.uint8:
96
+ # Unlike MATLAB, numpy.unit8() WILL NOT round by default.
97
+ img_np = (img_np * 255.0).round()
98
+ img_np = img_np.astype(out_type)
99
+ result.append(img_np)
100
+ if len(result) == 1:
101
+ result = result[0]
102
+ return result
103
+
104
+
105
+ def get_noise(img, value=10):
106
+
107
+ noise = np.random.uniform(0, 256, img.shape[0:2])
108
+
109
+ v = value * 0.01
110
+ noise[np.where(noise < (256 - v))] = 0
111
+
112
+ k = np.array([[0, 0.1, 0],
113
+ [0.1, 8, 0.1],
114
+ [0, 0.1, 0]])
115
+
116
+ noise = cv2.filter2D(noise, -1, k)
117
+
118
+ '''cv2.imshow('img',noise)
119
+ cv2.waitKey()
120
+ cv2.destroyWindow('img')'''
121
+ return noise
122
+
123
+
124
+ def rain_blur(noise, length=10, angle=0, w=1):
125
+
126
+ trans = cv2.getRotationMatrix2D((length / 2, length / 2), angle - 45, 1 - length / 100.0)
127
+ dig = np.diag(np.ones(length))
128
+ k = cv2.warpAffine(dig, trans, (length, length))
129
+ k = cv2.GaussianBlur(k, (w, w), 0)
130
+
131
+ blurred = cv2.filter2D(noise, -1, k)
132
+
133
+ cv2.normalize(blurred, blurred, 0, 255, cv2.NORM_MINMAX)
134
+ blurred = np.array(blurred, dtype=np.uint8)
135
+
136
+ rain = np.expand_dims(blurred, 2)
137
+ blurred = np.repeat(rain, 3, 2)
138
+
139
+ return blurred
140
+
141
+
142
+ def add_rain(img,value):
143
+ if np.max(img) > 1:
144
+ pass
145
+ else:
146
+ img = img*255
147
+
148
+
149
+ w, h, c = img.shape
150
+ h = h - (h % 4)
151
+ w = w - (w % 4)
152
+ img = img[0:w, 0:h, :]
153
+
154
+
155
+ w = np.random.choice([3, 5, 7, 9, 11], p=[0.2, 0.2, 0.2, 0.2, 0.2])
156
+ length = np.random.randint(30, 41)
157
+ angle = np.random.randint(-45, 45)
158
+
159
+ noise = get_noise(img, value=value)
160
+ rain = rain_blur(noise, length=length, angle=angle, w=w)
161
+
162
+ img = img.astype('float32') + rain
163
+ np.clip(img, 0, 255, out=img)
164
+ img = img/255.0
165
+ return img
166
+
167
+
168
+ def add_rain_range(img, value_min, value_max):
169
+ value = np.random.randint(value_min, value_max)
170
+ if np.max(img) > 1:
171
+ pass
172
+ else:
173
+ img = img*255
174
+
175
+
176
+ w, h, c = img.shape
177
+ h = h - (h % 4)
178
+ w = w - (w % 4)
179
+ img = img[0:w, 0:h, :]
180
+
181
+
182
+ w = np.random.choice([3, 5, 7, 9, 11], p=[0.2, 0.2, 0.2, 0.2, 0.2])
183
+ length = np.random.randint(30, 41)
184
+ angle = np.random.randint(-45, 45)
185
+
186
+ noise = get_noise(img, value=value)
187
+ rain = rain_blur(noise, length=length, angle=angle, w=w)
188
+
189
+ img = img.astype('float32') + rain
190
+ np.clip(img, 0, 255, out=img)
191
+ img = img/255.0
192
+ return img
193
+
194
+
195
+ def add_Poisson_noise(img, level=2):
196
+ # input range[0, 1]
197
+ vals = 10**(level)
198
+ img = np.random.poisson(img * vals).astype(np.float32) / vals
199
+ img = np.clip(img, 0.0, 1.0)
200
+ return img
201
+
202
+
203
+ def add_Gaussian_noise(img, level=20):
204
+ # input range[0, 1]
205
+ noise_level = level / 255.0
206
+ noise_map = np.random.normal(loc=0.0, scale=1.0, size=img.shape)*noise_level
207
+ img += noise_map
208
+ img = np.clip(img, 0.0, 1.0)
209
+ return img
210
+
211
+
212
+ def add_Gaussian_noise_range(img, min_level=10, max_level=50):
213
+ # input range[0, 1]
214
+ level = random.uniform(min_level, max_level)
215
+ noise_level = level / 255.0
216
+ noise_map = np.random.normal(loc=0.0, scale=1.0, size=img.shape)*noise_level
217
+ img += noise_map
218
+ img = np.clip(img, 0.0, 1.0)
219
+ return img
220
+
221
+
222
+ def add_sp_noise(img, snr=0.95, salt_pro=0.5):
223
+ # input range[0, 1]
224
+ output = np.copy(img)
225
+ for i in range(img.shape[0]):
226
+ for j in range(img.shape[1]):
227
+ rdn = random.random()
228
+ if rdn < snr:
229
+ output[i][j] = img[i][j]
230
+ else:
231
+ rdn = random.random()
232
+ if rdn < salt_pro:
233
+ output[i][j] = 1
234
+ else:
235
+ output[i][j] = 0
236
+
237
+ return output
238
+
239
+
240
+ def add_JPEG_noise(img, level):
241
+
242
+ quality_factor = level
243
+ img = single2uint(img)
244
+ _, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
245
+ img = cv2.imdecode(encimg, 1)
246
+ img = uint2single(img)
247
+
248
+ return img
249
+
250
+
251
+ def add_JPEG_noise_range(img, level_min, level_max):
252
+
253
+ quality_factor = random.randint(level_min, level_max)
254
+ img = single2uint(img)
255
+ _, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor])
256
+ img = cv2.imdecode(encimg, 1)
257
+ img = uint2single(img)
258
+
259
+ return img
260
+
261
+
262
+ def circular_lowpass_kernel(cutoff, kernel_size, pad_to=0):
263
+ """2D sinc filter, ref: https://dsp.stackexchange.com/questions/58301/2-d-circularly-symmetric-low-pass-filter
264
+
265
+ Args:
266
+ cutoff (float): cutoff frequency in radians (pi is max)
267
+ kernel_size (int): horizontal and vertical size, must be odd.
268
+ pad_to (int): pad kernel size to desired size, must be odd or zero.
269
+ """
270
+ assert kernel_size % 2 == 1, 'Kernel size must be an odd number.'
271
+ kernel = np.fromfunction(
272
+ lambda x, y: cutoff * special.j1(cutoff * np.sqrt(
273
+ (x - (kernel_size - 1) / 2) ** 2 + (y - (kernel_size - 1) / 2) ** 2)) / ((2 * np.pi * np.sqrt(
274
+ (x - (kernel_size - 1) / 2) ** 2 + (y - (kernel_size - 1) / 2) ** 2)) + 1e-9), [kernel_size, kernel_size])
275
+ kernel[(kernel_size - 1) // 2, (kernel_size - 1) // 2] = cutoff ** 2 / (4 * np.pi)
276
+ kernel = kernel / np.sum(kernel)
277
+ if pad_to > kernel_size:
278
+ pad_size = (pad_to - kernel_size) // 2
279
+ kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size)))
280
+ return kernel
281
+
282
+
283
+ def filter2D(img, kernel):
284
+ """PyTorch version of cv2.filter2D
285
+ Args:
286
+ img (Tensor): (b, c, h, w)
287
+ kernel (Tensor): (b, k, k)
288
+ """
289
+ k = kernel.size(-1)
290
+ b, c, h, w = img.size()
291
+ if k % 2 == 1:
292
+ img = F.pad(img, (k // 2, k // 2, k // 2, k // 2), mode='reflect')
293
+ else:
294
+ raise ValueError('Wrong kernel size')
295
+
296
+ ph, pw = img.size()[-2:]
297
+
298
+ if kernel.size(0) == 1:
299
+ # apply the same kernel to all batch images
300
+ img = img.view(b * c, 1, ph, pw)
301
+ kernel = kernel.view(1, 1, k, k)
302
+ return F.conv2d(img, kernel, padding=0).view(b, c, h, w)
303
+ else:
304
+ img = img.view(1, b * c, ph, pw)
305
+ kernel = kernel.view(b, 1, k, k).repeat(1, c, 1, 1).view(b * c, 1, k, k)
306
+ return F.conv2d(img, kernel, groups=b * c).view(b, c, h, w)
307
+
308
+
309
+ def sinc(img, kernel_size,omega_c):
310
+
311
+ sinc_kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=21)
312
+ sinc_kernel = torch.FloatTensor(sinc_kernel)
313
+
314
+ img = filter2D(img,sinc_kernel)
315
+
316
+ return img
317
+
318
+
319
+ def add_ringing(img):
320
+ # input: [0, 1]
321
+ img = img2tensor([img])[0].unsqueeze(0)
322
+ ks = 15
323
+ omega_c = round(1.2, 2)
324
+ img = sinc(img, ks, omega_c)
325
+ img = torch.clamp((img * 255.0).round(), 0, 255) / 255.
326
+ img = tensor2img(img, min_max=(0, 1))
327
+ img = img/255.0
328
+ return img
329
+
330
+
331
+ def low_light(img, lum_scale):
332
+ img = img*lum_scale
333
+ return img
334
+
335
+
336
+ def low_light_range(img):
337
+ lum_scale = random.uniform(0.1, 0.5)
338
+ img = img*lum_scale
339
+ return img
340
+
341
+
342
+ def iso_GaussianBlur(img, window, sigma):
343
+ img = cv2.GaussianBlur(img.copy(), (window, window), sigma)
344
+ return img
345
+
346
+
347
+ def iso_GaussianBlur_range(img, window, min_sigma=2, max_sigma=4):
348
+ sigma = random.uniform(min_sigma, max_sigma)
349
+ img = cv2.GaussianBlur(img.copy(), (window, window), sigma)
350
+ return img
351
+
352
+
353
+ def add_resize(img):
354
+ ori_H, ori_W = img.shape[0], img.shape[1]
355
+ rnum = np.random.rand()
356
+ if rnum > 0.8: # up
357
+ sf1 = random.uniform(1, 2)
358
+ elif rnum < 0.7: # down
359
+ sf1 = random.uniform(0.2, 1)
360
+ else:
361
+ sf1 = 1.0
362
+ img = cv2.resize(img, (int(sf1*img.shape[1]), int(sf1*img.shape[0])), interpolation=random.choice([1, 2, 3]))
363
+ img = cv2.resize(img, (int(ori_W), int(ori_H)), interpolation=random.choice([1, 2, 3]))
364
+
365
+ img = np.clip(img, 0.0, 1.0)
366
+
367
+ return img
368
+
369
+
370
+ def r_l(img):
371
+ img = img2tensor([img],bgr2rgb=False)[0].unsqueeze(0)
372
+ psf = np.ones((1, 1, 5, 5))
373
+ psf = psf / psf.sum()
374
+ img = img.numpy()
375
+ img = np.pad(img, ((0, 0), (0, 0), (7, 7), (7, 7)), 'linear_ramp')
376
+ img = restoration.richardson_lucy(img, psf, 1)
377
+ img = img[:, :, 7:-7, 7:-7]
378
+ img = torch.from_numpy(img)
379
+ img = img.squeeze(0).numpy().transpose(1, 2, 0)
380
+ return img
381
+
382
+
383
+ def inpainting(img,l_num,l_thick):
384
+
385
+ ori_h, ori_w = img.shape[0], img.shape[1]
386
+ mask = np.zeros((ori_h, ori_w, 3), np.uint8)
387
+ col = random.choice(['white', 'black'])
388
+ while (l_num):
389
+ x1, y1 = random.randint(0, ori_w), random.randint(0, ori_h)
390
+ x2, y2 = random.randint(0, ori_w), random.randint(0, ori_h)
391
+ pts = np.array([[x1, y1], [x2, y2]], np.int32)
392
+ pts = pts.reshape((-1, 1, 2))
393
+ mask = cv2.polylines(mask, [pts], 0, (1, 1, 1), l_thick)
394
+ l_num -= 1
395
+
396
+ if col == 'white':
397
+ img = np.clip(img + mask, 0, 1)
398
+ else:
399
+ img = np.clip(img - mask, 0, 1)
400
+
401
+ return img
data/degradation_toolkit/degradation_utils.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ import random
4
+ from PIL import Image
5
+
6
+ from data.degradation_toolkit.add_degradation_various import *
7
+ from data.degradation_toolkit.image_operators import *
8
+ from data.degradation_toolkit.x_distortion import *
9
+
10
+
11
+ degradation_list1 = [
12
+ 'blur',
13
+ 'noise',
14
+ 'compression',
15
+ 'brighten',
16
+ 'darken',
17
+ 'spatter',
18
+ 'contrast_strengthen',
19
+ 'contrast_weaken',
20
+ 'saturate_strengthen',
21
+ 'saturate_weaken',
22
+ 'oversharpen',
23
+ 'pixelate',
24
+ 'quantization',
25
+ ]
26
+
27
+
28
+ degradation_list2 = [
29
+ 'Rain',
30
+ 'Ringing',
31
+ 'r_l',
32
+ 'Inpainting',
33
+ 'mosaic',
34
+ 'SRx2',
35
+ 'SRx4',
36
+ 'GaussianNoise',
37
+ 'GaussianBlur',
38
+ 'JPEG',
39
+ 'Resize',
40
+ 'SPNoise',
41
+ 'LowLight',
42
+ 'PoissonNoise',
43
+ 'gray',
44
+ 'ColorDistortion',
45
+ ]
46
+
47
+
48
+ degradation_list3 = [
49
+ 'Laplacian',
50
+ 'Canny',
51
+ 'Sobel',
52
+ 'Defocus',
53
+ 'Mosaic',
54
+ 'Barrel',
55
+ 'Pincushion',
56
+ 'Spatter',
57
+ 'Elastic',
58
+ 'Frost',
59
+ 'Contrast',
60
+ ]
61
+
62
+
63
+ degradation_list4 = [
64
+ 'flip',
65
+ 'rotate90',
66
+ 'rotate180',
67
+ 'rotate270',
68
+ 'identity',
69
+ ]
70
+
71
+
72
+ all_degradation_types = degradation_list1 + degradation_list2 + degradation_list3 + degradation_list4
73
+
74
+
75
+ def single2uint(img):
76
+ return np.uint8((img.clip(0, 1) * 255.0).round())
77
+
78
+
79
+ def uint2single(img):
80
+ return np.float32(img / 255.0)
81
+
82
+
83
+ def add_x_distortion_single_images(img_gt1, deg_type):
84
+ # np.uint8, BGR
85
+ x_distortion_dict = distortions_dict
86
+ severity = random.choice([1, 2, 3, 4, 5])
87
+ if deg_type == 'compression' or deg_type == "quantization":
88
+ severity = min(3, severity)
89
+ deg_type = random.choice(x_distortion_dict[deg_type])
90
+
91
+ img_gt1 = cv2.cvtColor(img_gt1, cv2.COLOR_BGR2RGB)
92
+ img_lq1 = globals()[deg_type](img_gt1, severity)
93
+
94
+ img_gt1 = cv2.cvtColor(img_gt1, cv2.COLOR_RGB2BGR)
95
+ img_lq1 = cv2.cvtColor(img_lq1, cv2.COLOR_RGB2BGR)
96
+
97
+ return img_lq1, img_gt1, deg_type
98
+
99
+
100
+ def add_degradation_single_images(img_gt1, deg_type):
101
+ if deg_type == 'Rain':
102
+ value = random.uniform(40, 200)
103
+ img_lq1 = add_rain(img_gt1, value=value)
104
+ elif deg_type == 'Ringing':
105
+ img_lq1 = add_ringing(img_gt1)
106
+ elif deg_type == 'r_l':
107
+ img_lq1 = r_l(img_gt1)
108
+ elif deg_type == 'Inpainting':
109
+ l_num = random.randint(20, 50)
110
+ l_thick = random.randint(10, 20)
111
+ img_lq1 = inpainting(img_gt1, l_num=l_num, l_thick=l_thick)
112
+ elif deg_type == 'mosaic':
113
+ img_lq1 = mosaic_CFA_Bayer(img_gt1)
114
+ elif deg_type == 'SRx2':
115
+ H, W, _ = img_gt1.shape
116
+ img_lq1 = cv2.resize(img_gt1, (W//2, H//2), interpolation=cv2.INTER_CUBIC)
117
+ img_lq1 = cv2.resize(img_lq1, (W, H), interpolation=cv2.INTER_CUBIC)
118
+ elif deg_type == 'SRx4':
119
+ H, W, _ = img_gt1.shape
120
+ img_lq1 = cv2.resize(img_gt1, (W//4, H//4), interpolation=cv2.INTER_CUBIC)
121
+ img_lq1 = cv2.resize(img_lq1, (W, H), interpolation=cv2.INTER_CUBIC)
122
+
123
+ elif deg_type == 'GaussianNoise':
124
+ level = random.uniform(10, 50)
125
+ img_lq1 = add_Gaussian_noise(img_gt1, level=level)
126
+ elif deg_type == 'GaussianBlur':
127
+ sigma = random.uniform(2, 4)
128
+ img_lq1 = iso_GaussianBlur(img_gt1, window=15, sigma=sigma)
129
+ elif deg_type == 'JPEG':
130
+ level = random.randint(10, 40)
131
+ img_lq1 = add_JPEG_noise(img_gt1, level=level)
132
+ elif deg_type == 'Resize':
133
+ img_lq1 = add_resize(img_gt1)
134
+ elif deg_type == 'SPNoise':
135
+ img_lq1 = add_sp_noise(img_gt1)
136
+ elif deg_type == 'LowLight':
137
+ lum_scale = random.uniform(0.3, 0.4)
138
+ img_lq1 = low_light(img_gt1, lum_scale=lum_scale)
139
+ elif deg_type == 'PoissonNoise':
140
+ img_lq1 = add_Poisson_noise(img_gt1, level=2)
141
+ elif deg_type == 'gray':
142
+ img_lq1 = cv2.cvtColor(img_gt1, cv2.COLOR_BGR2GRAY)
143
+ img_lq1 = np.expand_dims(img_lq1, axis=2)
144
+ img_lq1 = np.concatenate((img_lq1, img_lq1, img_lq1), axis=2)
145
+ elif deg_type == 'None':
146
+ img_lq1 = img_gt1
147
+ elif deg_type == 'ColorDistortion':
148
+ if random.random() < 0.5:
149
+ channels = list(range(3))
150
+ random.shuffle(channels)
151
+ img_lq1 = img_gt1[..., channels]
152
+ else:
153
+ channel = random.randint(0, 2)
154
+ img_lq1 = img_gt1.copy()
155
+ if random.random() < 0.5:
156
+ img_lq1[..., channel] = 0
157
+ else:
158
+ img_lq1[..., channel] = 1
159
+ else:
160
+ print('Error!', '-', deg_type, '-')
161
+ exit()
162
+ img_lq1 = np.clip(img_lq1 * 255, 0, 255).round().astype(np.uint8)
163
+ img_lq1 = img_lq1.astype(np.float32) / 255.0
164
+ img_gt1 = np.clip(img_gt1 * 255, 0, 255).round().astype(np.uint8)
165
+ img_gt1 = img_gt1.astype(np.float32) / 255.0
166
+
167
+ return img_lq1, img_gt1
168
+
169
+
170
+ def calculate_operators_single_images(img_gt1, deg_type):
171
+ img_gt1 = img_gt1.copy()
172
+
173
+ if deg_type == 'Laplacian':
174
+ img_lq1 = Laplacian_edge_detector(img_gt1)
175
+ elif deg_type == 'Canny':
176
+ img_lq1 = Canny_edge_detector(img_gt1)
177
+ elif deg_type == 'Sobel':
178
+ img_lq1 = Sobel_edge_detector(img_gt1)
179
+ elif deg_type == 'Defocus':
180
+ img_lq1 = defocus_blur(img_gt1, level=(3, 0.2))
181
+ elif deg_type == 'Mosaic':
182
+ img_lq1 = mosaic_CFA_Bayer(img_gt1)
183
+ elif deg_type == 'Barrel':
184
+ img_lq1 = simulate_barrel_distortion(img_gt1, k1=0.1, k2=0.05)
185
+ elif deg_type == 'Pincushion':
186
+ img_lq1 = simulate_pincushion_distortion(img_gt1, k1=-0.1, k2=-0.05)
187
+ elif deg_type == 'Spatter':
188
+ img_lq1 = uint2single(spatter((img_gt1), severity=1))
189
+ elif deg_type == 'Elastic':
190
+ img_lq1 = elastic_transform((img_gt1), severity=4)
191
+ elif deg_type == 'Frost':
192
+ img_lq1 = uint2single(frost(img_gt1, severity=4))
193
+ elif deg_type == 'Contrast':
194
+ img_lq1 = adjust_contrast(img_gt1, clip_limit=4.0, tile_grid_size=(4, 4))
195
+
196
+ if np.mean(img_lq1).astype(np.float16) == 0:
197
+ print(deg_type, 'prompt&query zero images.')
198
+ img_lq1 = img_gt1.copy()
199
+
200
+ return img_lq1, img_gt1
201
+
202
+
203
+ def add_degradation(image, deg_type):
204
+ if deg_type in degradation_list1:
205
+ list_idx = 1
206
+ img_lq1, _, _ = add_x_distortion_single_images(np.copy(image), deg_type)
207
+ img_lq1 = uint2single(img_lq1)
208
+ elif deg_type in degradation_list2:
209
+ list_idx = 2
210
+ img_lq1, _ = add_degradation_single_images(np.copy(uint2single(image)), deg_type)
211
+ elif deg_type in degradation_list3:
212
+ list_idx = 3
213
+ if deg_type in ['Laplacian', 'Canny', 'Sobel', 'Frost']:
214
+ img_lq1, _ = calculate_operators_single_images(np.copy(image), deg_type)
215
+ else:
216
+ img_lq1, _ = calculate_operators_single_images(np.copy(uint2single(image)), deg_type)
217
+ if img_lq1.max() > 1:
218
+ img_lq1 = uint2single(img_lq1)
219
+ elif deg_type in degradation_list4:
220
+ list_idx = 4
221
+ img_lq1 = np.copy(uint2single(image))
222
+ if deg_type == 'flip':
223
+ img_lq1 = np.flip(img_lq1, axis=1)
224
+ elif deg_type == 'rotate90':
225
+ img_lq1 = np.rot90(img_lq1, k=1)
226
+ elif deg_type == 'rotate180':
227
+ img_lq1 = np.rot90(img_lq1, k=2)
228
+ elif deg_type == 'rotate270':
229
+ img_lq1 = np.rot90(img_lq1, k=3)
230
+ elif deg_type == 'identity':
231
+ pass
232
+ return Image.fromarray(single2uint(img_lq1)), list_idx
data/degradation_toolkit/frost/frost1.png ADDED

Git LFS Details

  • SHA256: ff9f907860bd7a835d459e32f9d588062b7f61ee267343cc7222b56753a14755
  • Pointer size: 132 Bytes
  • Size of remote file: 1.2 MB
data/degradation_toolkit/frost/frost2.png ADDED

Git LFS Details

  • SHA256: fe211a89b336999c207a852ce05818d4545d0b57c5beadd824b4cc9d9a9b6137
  • Pointer size: 131 Bytes
  • Size of remote file: 299 kB
data/degradation_toolkit/frost/frost3.png ADDED

Git LFS Details

  • SHA256: 2d0d50b4a9bb213f38b024ef7768731bb83cc08d2f26b5766bbc167cdfa0e504
  • Pointer size: 131 Bytes
  • Size of remote file: 299 kB
data/degradation_toolkit/frost/frost4.jpg ADDED

Git LFS Details

  • SHA256: 3f8b91ca1a9fa7167b09e773da53f5ae60d0a1fd88f02a783f6e328a72887f6e
  • Pointer size: 130 Bytes
  • Size of remote file: 36.7 kB
data/degradation_toolkit/frost/frost5.jpg ADDED

Git LFS Details

  • SHA256: 5fc6a19df4a429ba68abdcc8f8a4278d4c9f81c9ccafd2c92ab0c8cf8992ebd2
  • Pointer size: 131 Bytes
  • Size of remote file: 155 kB
data/degradation_toolkit/frost/frost6.jpg ADDED

Git LFS Details

  • SHA256: 1f92b2f48408748085b68dd81d816ef239f42cef3029c25d041fcb6760fb4f25
  • Pointer size: 130 Bytes
  • Size of remote file: 90.2 kB
data/degradation_toolkit/image_operators.py ADDED
@@ -0,0 +1,420 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import numpy as np
4
+ import argparse
5
+ from skimage.filters import gaussian
6
+ from scipy.ndimage.interpolation import map_coordinates
7
+ from tqdm import tqdm
8
+ from PIL import Image
9
+
10
+
11
+ def single2uint(img):
12
+ return np.uint8((img.clip(0, 1)*255.).round())
13
+
14
+
15
+ def uint2single(img):
16
+ return np.float32(img/255.)
17
+
18
+
19
+ def Laplacian_edge_detector(img):
20
+ # input: [0, 1]
21
+ # return: [0, 1] (H, W, 3)
22
+ img = np.clip(img*255, 0, 255).astype(np.uint8) # (H, W, 3)
23
+ img = cv2.GaussianBlur(img, (3, 3), 0)
24
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
25
+ img = cv2.Laplacian(img, cv2.CV_16S) # (H, W)
26
+ img = cv2.convertScaleAbs(img)
27
+ img = img.astype(np.float32) / 255.
28
+ img = np.expand_dims(img, 2).repeat(3, axis=2) # (H, W, 3)
29
+ return img
30
+
31
+
32
+ def Laplacian_edge_detector_uint8(img):
33
+ # input: [0, 255]
34
+ # return: [0, 255] (H, W, 3)
35
+ img = cv2.GaussianBlur(img, (3, 3), 0)
36
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
37
+ img = cv2.Laplacian(img, cv2.CV_16S) # (H, W)
38
+ img = cv2.convertScaleAbs(img)
39
+ img = np.expand_dims(img, 2).repeat(3, axis=2) # (H, W, 3)
40
+ return img
41
+
42
+
43
+ def Canny_edge_detector(img):
44
+ # input: [0, 1]
45
+ # return: [0, 1] (H, W, 3)
46
+ img = np.clip(img*255, 0, 255).astype(np.uint8) # (H, W, 3)
47
+ img = cv2.GaussianBlur(img, (3, 3), 0)
48
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
49
+ img = cv2.Canny(img, 50, 200) # (H, W)
50
+ img = cv2.convertScaleAbs(img)
51
+ img = img.astype(np.float32) / 255.
52
+ img = np.expand_dims(img, 2).repeat(3, axis=2) # (H, W, 3)
53
+ return img
54
+
55
+
56
+ def Canny_edge_detector_uint8(img):
57
+ # input: [0, 255]
58
+ # return: [0, 255] (H, W, 3)
59
+ img = cv2.GaussianBlur(img, (3, 3), 0)
60
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
61
+ img = cv2.Canny(img, 50, 200) # (H, W)
62
+ img = cv2.convertScaleAbs(img)
63
+ img = np.expand_dims(img, 2).repeat(3, axis=2) # (H, W, 3)
64
+ return img
65
+
66
+
67
+ def Sobel_edge_detector(img):
68
+ # input: [0, 1]
69
+ # return: [0, 1] (H, W, 3)
70
+ img = np.clip(img*255, 0, 255).astype(np.uint8) # (H, W, 3)
71
+ img = cv2.GaussianBlur(img, (3, 3), 0)
72
+ img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
73
+ img = cv2.Sobel(img, cv2.CV_16S, 1, 1) # (H, W)
74
+ img = cv2.convertScaleAbs(img)
75
+ img = img.astype(np.float32) / 255.
76
+ img = np.expand_dims(img, 2).repeat(3, axis=2) # (H, W, 3)
77
+ return img
78
+
79
+
80
+ def erosion(img, kernel_size=5):
81
+ kernel = np.ones((kernel_size, kernel_size), np.uint8)
82
+ img = cv2.erode(img, kernel, iterations=1)
83
+ return img
84
+
85
+
86
+ def dilatation(img, kernel_size=5):
87
+ kernel = np.ones((kernel_size, kernel_size), np.uint8)
88
+ img = cv2.dilate(img, kernel, iterations=1)
89
+ return img
90
+
91
+
92
+ def opening(img):
93
+ return dilatation(erosion(img))
94
+
95
+
96
+ def closing(img):
97
+ return erosion(dilatation(img))
98
+
99
+
100
+ def morphological_gradient(img):
101
+ return dilatation(img) - erosion(img)
102
+
103
+
104
+ def top_hat(img):
105
+ return img - opening(img)
106
+
107
+
108
+ def black_hat(img):
109
+ return closing(img) - img
110
+
111
+
112
+ def adjust_contrast(image, clip_limit=2.0, tile_grid_size=(8, 8)):
113
+
114
+ image = single2uint(image)
115
+ lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)
116
+
117
+ l, a, b = cv2.split(lab)
118
+
119
+ clahe = cv2.createCLAHE(clipLimit=clip_limit, tileGridSize=tile_grid_size)
120
+ l_eq = clahe.apply(l)
121
+
122
+ lab_eq = cv2.merge((l_eq, a, b))
123
+ result = cv2.cvtColor(lab_eq, cv2.COLOR_LAB2BGR)
124
+
125
+ result = uint2single(result)
126
+ return result
127
+
128
+
129
+ def embossing(img):
130
+ kernel = np.array([[0, -1, -1],
131
+ [1, 0, -1],
132
+ [1, 1, 0]])
133
+ return cv2.filter2D(img, -1, kernel)
134
+
135
+
136
+ def hough_transform_line_detection(img):
137
+ img = single2uint(img)
138
+ dst = cv2.Canny(img, 50, 200, apertureSize=3)
139
+ cdst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR)
140
+ lines = cv2.HoughLinesP(dst, 1, np.pi / 180, 230, None, 0, 0)
141
+ if lines is not None:
142
+ for i in range(0, len(lines)):
143
+ rho = lines[i][0][0]
144
+ theta = lines[i][0][1]
145
+ a = np.cos(theta)
146
+ b = np.sin(theta)
147
+
148
+ x0 = a * rho
149
+ y0 = b * rho
150
+ pt1 = (int(x0 + 1000*(-b)), int(y0 + 1000*(a)))
151
+
152
+ pt2 = (int(x0 - 1000*(-b)), int(y0 - 1000*(a)))
153
+ cv2.line(img, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA)
154
+
155
+ return uint2single(img)
156
+
157
+
158
+ def hough_circle_detection(img):
159
+ gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
160
+ circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 100, param1=100, param2=30, minRadius=50, maxRadius=200)
161
+ circles = np.uint16(np.around(circles))
162
+ for i in circles[0, :]:
163
+ cv2.circle(img, (i[0], i[1]), i[2], (0, 0, 255), 2)
164
+ return img
165
+
166
+
167
+ def disk(radius, alias_blur=0.1, dtype=np.float32):
168
+ if radius <= 8:
169
+ L = np.arange(-8, 8 + 1)
170
+ ksize = (3, 3)
171
+ else:
172
+ L = np.arange(-radius, radius + 1)
173
+ ksize = (5, 5)
174
+ X, Y = np.meshgrid(L, L)
175
+ aliased_disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype)
176
+ aliased_disk /= np.sum(aliased_disk)
177
+
178
+ # supersample disk to antialias
179
+ return cv2.GaussianBlur(aliased_disk, ksize=ksize, sigmaX=alias_blur)
180
+
181
+
182
+ def defocus_blur(image, level=(1, 0.1)):
183
+ c = level
184
+ kernel = disk(radius=c[0], alias_blur=c[1])
185
+
186
+ channels = []
187
+ for d in range(3):
188
+ channels.append(cv2.filter2D(image[:, :, d], -1, kernel))
189
+ channels = np.array(channels).transpose((1, 2, 0)) # 3x64x64 -> 64x64x3
190
+
191
+ return np.clip(channels, 0, 1)
192
+
193
+
194
+ def masks_CFA_Bayer(shape):
195
+ pattern = "RGGB"
196
+ channels = dict((channel, np.zeros(shape)) for channel in "RGB")
197
+ for channel, (y, x) in zip(pattern, [(0, 0), (0, 1), (1, 0), (1, 1)]):
198
+ channels[channel][y::2, x::2] = 1
199
+ return tuple(channels[c].astype(bool) for c in "RGB")
200
+
201
+
202
+ def cfa4_to_rgb(CFA4):
203
+ RGB = np.zeros((CFA4.shape[0]*2, CFA4.shape[1]*2, 3), dtype=np.uint8)
204
+ RGB[0::2, 0::2, 0] = CFA4[:, :, 0] # R
205
+ RGB[0::2, 1::2, 1] = CFA4[:, :, 1] # G on R row
206
+ RGB[1::2, 0::2, 1] = CFA4[:, :, 2] # G on B row
207
+ RGB[1::2, 1::2, 2] = CFA4[:, :, 3] # B
208
+
209
+ return RGB
210
+
211
+
212
+ def mosaic_CFA_Bayer(RGB):
213
+ RGB = single2uint(RGB)
214
+ R_m, G_m, B_m = masks_CFA_Bayer(RGB.shape[0:2])
215
+ mask = np.concatenate(
216
+ (R_m[..., np.newaxis], G_m[..., np.newaxis], B_m[..., np.newaxis]), axis=-1
217
+ )
218
+ mosaic = np.multiply(mask, RGB) # mask*RGB
219
+ CFA = mosaic.sum(2).astype(np.uint8)
220
+
221
+ CFA4 = np.zeros((RGB.shape[0] // 2, RGB.shape[1] // 2, 4), dtype=np.uint8)
222
+ CFA4[:, :, 0] = CFA[0::2, 0::2]
223
+ CFA4[:, :, 1] = CFA[0::2, 1::2]
224
+ CFA4[:, :, 2] = CFA[1::2, 0::2]
225
+ CFA4[:, :, 3] = CFA[1::2, 1::2]
226
+
227
+ rgb = cfa4_to_rgb(CFA4)
228
+ rgb = uint2single(rgb)
229
+ return rgb
230
+
231
+
232
+ def simulate_barrel_distortion(image, k1=0.02, k2=0.01):
233
+ height, width = image.shape[:2]
234
+ mapx, mapy = np.meshgrid(np.arange(width), np.arange(height))
235
+ mapx = 2 * mapx / (width - 1) - 1
236
+ mapy = 2 * mapy / (height - 1) - 1
237
+ r = np.sqrt(mapx**2 + mapy**2)
238
+ mapx = mapx * (1 + k1 * r**2 + k2 * r**4)
239
+ mapy = mapy * (1 + k1 * r**2 + k2 * r**4)
240
+ mapx = (mapx + 1) * (width - 1) / 2
241
+ mapy = (mapy + 1) * (height - 1) / 2
242
+ distorted_image = cv2.remap(image, mapx.astype(np.float32), mapy.astype(np.float32), cv2.INTER_LINEAR)
243
+ return distorted_image
244
+
245
+
246
+ def simulate_pincushion_distortion(image, k1=-0.02, k2=-0.01):
247
+ height, width = image.shape[:2]
248
+ mapx, mapy = np.meshgrid(np.arange(width), np.arange(height))
249
+ mapx = 2 * mapx / (width - 1) - 1
250
+ mapy = 2 * mapy / (height - 1) - 1
251
+ r = np.sqrt(mapx**2 + mapy**2)
252
+ mapx = mapx * (1 + k1 * r**2 + k2 * r**4)
253
+ mapy = mapy * (1 + k1 * r**2 + k2 * r**4)
254
+ mapx = (mapx + 1) * (width - 1) / 2
255
+ mapy = (mapy + 1) * (height - 1) / 2
256
+ distorted_image = cv2.remap(image, mapx.astype(np.float32), mapy.astype(np.float32), cv2.INTER_LINEAR)
257
+ return distorted_image
258
+
259
+
260
+ def rgb2gray(rgb):
261
+ return np.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])
262
+
263
+
264
+ def spatter(x, severity=1):
265
+ c = [(0.65, 0.3, 4, 0.69, 0.6, 0),
266
+ (0.65, 0.3, 3, 0.68, 0.6, 0),
267
+ (0.65, 0.3, 2, 0.68, 0.5, 0),
268
+ (0.65, 0.3, 1, 0.65, 1.5, 1),
269
+ (0.67, 0.4, 1, 0.65, 1.5, 1)][severity - 1]
270
+ x_PIL = x
271
+ x = np.array(x, dtype=np.float32) / 255.
272
+
273
+ liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])
274
+
275
+ liquid_layer = gaussian(liquid_layer, sigma=c[2])
276
+ liquid_layer[liquid_layer < c[3]] = 0
277
+ if c[5] == 0:
278
+ liquid_layer = (liquid_layer * 255).astype(np.uint8)
279
+ dist = 255 - cv2.Canny(liquid_layer, 50, 150)
280
+ dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
281
+ _, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
282
+ dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
283
+ dist = cv2.equalizeHist(dist)
284
+ ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
285
+ dist = cv2.filter2D(dist, cv2.CV_8U, ker)
286
+ dist = cv2.blur(dist, (3, 3)).astype(np.float32)
287
+
288
+ m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
289
+ m /= np.max(m, axis=(0, 1))
290
+ m *= c[4]
291
+ # water is pale turqouise
292
+ color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
293
+ 238 / 255. * np.ones_like(m[..., :1]),
294
+ 238 / 255. * np.ones_like(m[..., :1])), axis=2)
295
+
296
+ color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
297
+
298
+ if len(x.shape) < 3 or x.shape[2] < 3:
299
+ add_spatter_color = cv2.cvtColor(np.clip(m * color, 0, 1),
300
+ cv2.COLOR_BGRA2BGR)
301
+ add_spatter_gray = rgb2gray(add_spatter_color)
302
+
303
+ return (np.clip(x + add_spatter_gray, 0, 1) * 255).astype(np.uint8)
304
+
305
+ else:
306
+
307
+ x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)
308
+
309
+ return (cv2.cvtColor(np.clip(x + m * color, 0, 1),
310
+ cv2.COLOR_BGRA2BGR) * 255).astype(np.uint8)
311
+ else:
312
+ m = np.where(liquid_layer > c[3], 1, 0)
313
+ m = gaussian(m.astype(np.float32), sigma=c[4])
314
+ m[m < 0.8] = 0
315
+
316
+ x_rgb = np.array(x_PIL)
317
+
318
+ # mud brown
319
+ color = np.concatenate((63 / 255. * np.ones_like(x_rgb[..., :1]),
320
+ 42 / 255. * np.ones_like(x_rgb[..., :1]),
321
+ 20 / 255. * np.ones_like(x_rgb[..., :1])),
322
+ axis=2)
323
+ color *= m[..., np.newaxis]
324
+ if len(x.shape) < 3 or x.shape[2] < 3:
325
+ x *= (1 - m)
326
+ return (np.clip(x + rgb2gray(color), 0, 1) * 255).astype(np.uint8)
327
+
328
+ else:
329
+ x *= (1 - m[..., np.newaxis])
330
+ return (np.clip(x + color, 0, 1) * 255).astype(np.uint8)
331
+
332
+
333
+ # mod of https://gist.github.com/erniejunior/601cdf56d2b424757de5
334
+ def elastic_transform(image, severity=3):
335
+ image = np.array(image, dtype=np.float32) / 255.
336
+ shape = image.shape
337
+ shape_size = shape[:2]
338
+
339
+ sigma = np.array(shape_size) * 0.01
340
+ alpha = [250 * 0.05, 250 * 0.065, 250 * 0.085, 250 * 0.1, 250 * 0.12][
341
+ severity - 1]
342
+ max_dx = shape[0] * 0.005
343
+ max_dy = shape[0] * 0.005
344
+
345
+ dx = (gaussian(np.random.uniform(-max_dx, max_dx, size=shape[:2]),
346
+ sigma, mode='reflect', truncate=3) * alpha).astype(
347
+ np.float32)
348
+ dy = (gaussian(np.random.uniform(-max_dy, max_dy, size=shape[:2]),
349
+ sigma, mode='reflect', truncate=3) * alpha).astype(
350
+ np.float32)
351
+
352
+ if len(image.shape) < 3 or image.shape[2] < 3:
353
+ x, y = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]))
354
+ indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx, (-1, 1))
355
+ else:
356
+ dx, dy = dx[..., np.newaxis], dy[..., np.newaxis]
357
+ x, y, z = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]),
358
+ np.arange(shape[2]))
359
+ indices = np.reshape(y + dy, (-1, 1)), np.reshape(x + dx,
360
+ (-1, 1)), np.reshape(
361
+ z, (-1, 1))
362
+ return np.clip(
363
+ map_coordinates(image, indices, order=1, mode='reflect').reshape(
364
+ shape), 0, 1) * 255
365
+
366
+
367
+ def frost(x, severity=2):
368
+ c = [(1, 0.4),
369
+ (0.8, 0.6),
370
+ (0.7, 0.7),
371
+ (0.65, 0.7),
372
+ (0.6, 0.75)][severity - 1]
373
+
374
+ idx = np.random.randint(5)
375
+ filename = [os.path.join("degradation_toolkit/frost", 'frost1.png'),
376
+ os.path.join("degradation_toolkit/frost", 'frost2.png'),
377
+ os.path.join("degradation_toolkit/frost", 'frost3.png'),
378
+ os.path.join("degradation_toolkit/frost", 'frost4.jpg'),
379
+ os.path.join("degradation_toolkit/frost", 'frost5.jpg'),
380
+ os.path.join("degradation_toolkit/frost", 'frost6.jpg')][idx]
381
+ frost = Image.open(filename)
382
+ frost = frost.convert("RGB")
383
+ frost = np.array(frost)
384
+ # frost = cv2.imread(filename)
385
+ frost = uint2single(frost)
386
+ frost_shape = frost.shape
387
+ x_shape = np.array(x).shape
388
+
389
+ # resize the frost image so it fits to the image dimensions
390
+ scaling_factor = 1
391
+ if frost_shape[0] >= x_shape[0] and frost_shape[1] >= x_shape[1]:
392
+ scaling_factor = 1
393
+ elif frost_shape[0] < x_shape[0] and frost_shape[1] >= x_shape[1]:
394
+ scaling_factor = x_shape[0] / frost_shape[0]
395
+ elif frost_shape[0] >= x_shape[0] and frost_shape[1] < x_shape[1]:
396
+ scaling_factor = x_shape[1] / frost_shape[1]
397
+ elif frost_shape[0] < x_shape[0] and frost_shape[1] < x_shape[
398
+ 1]: # If both dims are too small, pick the bigger scaling factor
399
+ scaling_factor_0 = x_shape[0] / frost_shape[0]
400
+ scaling_factor_1 = x_shape[1] / frost_shape[1]
401
+ scaling_factor = np.maximum(scaling_factor_0, scaling_factor_1)
402
+
403
+ scaling_factor *= 1.1
404
+ new_shape = (int(np.ceil(frost_shape[1] * scaling_factor)),
405
+ int(np.ceil(frost_shape[0] * scaling_factor)))
406
+ frost_rescaled = cv2.resize(frost, dsize=new_shape,
407
+ interpolation=cv2.INTER_CUBIC)
408
+
409
+ # randomly crop
410
+ x_start, y_start = np.random.randint(0, frost_rescaled.shape[0] - x_shape[
411
+ 0]), np.random.randint(0, frost_rescaled.shape[1] - x_shape[1])
412
+
413
+ if len(x_shape) < 3 or x_shape[2] < 3:
414
+ frost_rescaled = frost_rescaled[x_start:x_start + x_shape[0],
415
+ y_start:y_start + x_shape[1]]
416
+ frost_rescaled = rgb2gray(frost_rescaled)
417
+ else:
418
+ frost_rescaled = frost_rescaled[x_start:x_start + x_shape[0],
419
+ y_start:y_start + x_shape[1]][..., [2, 1, 0]]
420
+ return c[0] * np.array(x) + c[1] * frost_rescaled
data/degradation_toolkit/x_distortion/__init__.py ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .blur import *
2
+ from .brightness import *
3
+ from .quantization import *
4
+ from .compression import *
5
+ from .contrast import *
6
+ from .noise import *
7
+ from .oversharpen import *
8
+ from .pixelate import *
9
+ from .saturate import *
10
+
11
+
12
+ def add_distortion(img, severity=1, distortion_name=None):
13
+ """This function returns a distorted version of the given image.
14
+
15
+ @param img (np.ndarray, unit8): Input image, H x W x 3, RGB, [0, 255]
16
+ @param severity: Severity of distortion, [1, 5]
17
+ @distortion_name:
18
+ @return: Degraded image (np.ndarray, unit8), H x W x 3, RGB, [0, 255]
19
+ """
20
+
21
+ if not isinstance(img, np.ndarray):
22
+ raise AttributeError('Expecting type(img) to be numpy.ndarray')
23
+ if not (img.dtype.type is np.uint8):
24
+ raise AttributeError('Expecting img.dtype.type to be numpy.uint8')
25
+
26
+ if not (img.ndim in [2, 3]):
27
+ raise AttributeError('Expecting img.shape to be either (h x w) or (h x w x c)')
28
+ if img.ndim == 2:
29
+ img = np.stack((img,) * 3, axis=-1)
30
+
31
+ h, w, c = img.shape
32
+ if (h < 32 or w < 32):
33
+ raise AttributeError('The (w, h) must be at least 32 pixels')
34
+ if not (c in [1, 3]):
35
+ raise AttributeError('Expecting img to have either 1 or 3 chennels')
36
+ if c == 1:
37
+ img = np.stack((np.squeeze(img),) * 3, axis=-1)
38
+
39
+ if severity not in [1, 2, 3, 4, 5]:
40
+ raise AttributeError('The severity must be an integer in [1, 5]')
41
+
42
+ if distortion_name:
43
+ img_lq = globals()[distortion_name](img, severity)
44
+ else:
45
+ raise ValueError("The distortion_name must be passed")
46
+
47
+ return np.uint8(img_lq)
48
+
49
+
50
+ distortions_dict = {
51
+ "blur": [
52
+ "blur_gaussian",
53
+ "blur_motion",
54
+ "blur_glass",
55
+ "blur_lens",
56
+ "blur_zoom",
57
+ "blur_jitter",
58
+ ],
59
+ "noise": [
60
+ "noise_gaussian_RGB",
61
+ "noise_gaussian_YCrCb",
62
+ "noise_speckle",
63
+ "noise_spatially_correlated",
64
+ "noise_poisson",
65
+ "noise_impulse",
66
+ ],
67
+ "compression": [
68
+ "compression_jpeg",
69
+ "compression_jpeg_2000",
70
+ ],
71
+ "brighten": [
72
+ "brightness_brighten_shfit_HSV",
73
+ "brightness_brighten_shfit_RGB",
74
+ "brightness_brighten_gamma_HSV",
75
+ "brightness_brighten_gamma_RGB",
76
+ ],
77
+ "darken": [
78
+ "brightness_darken_shfit_HSV",
79
+ "brightness_darken_shfit_RGB",
80
+ "brightness_darken_gamma_HSV",
81
+ "brightness_darken_gamma_RGB",
82
+ ],
83
+ "contrast_strengthen": [
84
+ "contrast_strengthen_scale",
85
+ "contrast_strengthen_stretch",
86
+ ],
87
+ "contrast_weaken": [
88
+ "contrast_weaken_scale",
89
+ "contrast_weaken_stretch",
90
+ ],
91
+ "saturate_strengthen": [
92
+ "saturate_strengthen_HSV",
93
+ "saturate_strengthen_YCrCb",
94
+ ],
95
+ "saturate_weaken": [
96
+ "saturate_weaken_HSV",
97
+ "saturate_weaken_YCrCb",
98
+ ],
99
+ "oversharpen": [
100
+ "oversharpen",
101
+ ],
102
+ "pixelate": [
103
+ "pixelate",
104
+ ],
105
+ "quantization": [
106
+ "quantization_otsu",
107
+ "quantization_median",
108
+ "quantization_hist",
109
+ ],
110
+ "spatter": [
111
+ "spatter",
112
+ ],
113
+ }
114
+
115
+
116
+ def get_distortion_names(subset=None):
117
+ if subset in distortions_dict:
118
+ print(distortions_dict[subset])
119
+ else:
120
+ print(distortions_dict)
data/degradation_toolkit/x_distortion/blur.py ADDED
@@ -0,0 +1,155 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+ from skimage.filters import gaussian
5
+ from .helper import (
6
+ _motion_blur,
7
+ shuffle_pixels_njit,
8
+ clipped_zoom,
9
+ gen_disk,
10
+ gen_lensmask,
11
+ )
12
+
13
+
14
+ def blur_gaussian(img, severity=1):
15
+ """
16
+ Gaussian Blur.
17
+ severity=[1, 2, 3, 4, 5] corresponding to sigma=[1, 2, 3, 4, 5].
18
+ severity mainly refer to KADID-10K and Imagecorruptions.
19
+
20
+ @param img: Input image, H x W x 3, value range [0, 255]
21
+ @param severity: Severity of distortion, [1, 5]
22
+ @return: Degraded image, H x W x 3, value range [0, 255]
23
+ """
24
+ c = [1, 2, 3, 4, 5][severity - 1]
25
+ img = np.array(img) / 255.
26
+ img = gaussian(img, sigma=c, channel_axis=-1)
27
+ img = np.clip(img, 0, 1) * 255
28
+ return img.round().astype(np.uint8)
29
+
30
+
31
+ def blur_gaussian_lensmask(img, severity=1):
32
+ """
33
+ Gaussian Blur with Lens Mask.
34
+ severity=[1, 2, 3, 4, 5] corresponding to
35
+ [gamma, sigma]=[[2.0, 2], [2.4, 4], [3.0, 6], [3.8, 8], [5.0, 10]].
36
+ severity mainly refer to PieAPP.
37
+
38
+ @param img: Input image, H x W x 3, value range [0, 255]
39
+ @param severity: Severity of distortion, [1, 5]
40
+ @return: Degraded image, H x W x 3, value range [0, 255]
41
+ """
42
+ c = [(2.0, 2), (2.4, 4), (3.0, 6), (3.8, 8), (5.0, 10)][severity - 1]
43
+ img_orig = np.array(img) / 255.
44
+ h, w = img.shape[:2]
45
+ mask = gen_lensmask(h, w, gamma=c[0])[:, :, None]
46
+ img = gaussian(img_orig, sigma=c[1], channel_axis=-1)
47
+ img = mask * img_orig + (1 - mask) * img
48
+ img = np.clip(img, 0, 1) * 255
49
+ return img.round().astype(np.uint8)
50
+
51
+
52
+ def blur_motion(img, severity=1):
53
+ """
54
+ Motion Blur.
55
+ severity = [1, 2, 3, 4, 5] corresponding to radius=[5, 10, 15, 15, 20] and
56
+ sigma=[1, 2, 3, 4, 5].
57
+ severity mainly refer to Imagecorruptions.
58
+
59
+ @param img: Input image, H x W x 3, value range [0, 255]
60
+ @param severity: Severity of distortion, [0, 5]
61
+ @return: Degraded image, H x W x 3, value range [0, 255]
62
+ """
63
+ c = [(5, 3), (10, 5), (15, 7), (15, 9), (20, 12)][severity - 1]
64
+ angle = np.random.uniform(-90, 90)
65
+ img = np.array(img)
66
+ img = _motion_blur(img, radius=c[0], sigma=c[1], angle=angle)
67
+ img = np.clip(img, 0, 255)
68
+ return img.round().astype(np.uint8)
69
+
70
+
71
+ def blur_glass(img, severity=1):
72
+ """
73
+ Glass Blur.
74
+ severity = [1, 2, 3, 4, 5] corresponding to
75
+ [sigma, shift, iteration]=[(0.7, 1, 1), (0.9, 2, 1), (1.2, 2, 2), (1.4, 3, 2), (1.6, 4, 2)].
76
+ severity mainly refer to Imagecorruptions.
77
+
78
+ @param img: Input image, H x W x 3, value range [0, 255]
79
+ @param severity: Severity of distortion, [0, 5]
80
+ @return: Degraded image, H x W x 3, value range [0, 255]
81
+ """
82
+ c = [(0.7, 1, 1), (0.9, 2, 1), (1.2, 2, 2), (1.4, 3, 2), (1.6, 4, 2)][severity - 1]
83
+ img = np.array(img) / 255.
84
+ img = gaussian(img, sigma=c[0], channel_axis=-1)
85
+ img = shuffle_pixels_njit(img, shift=c[1], iteration=c[2])
86
+ img = np.clip(gaussian(img, sigma=c[0], channel_axis=-1), 0, 1) * 255
87
+ return img.round().astype(np.uint8)
88
+
89
+
90
+ def blur_lens(img, severity=1):
91
+ """
92
+ Lens Blur.
93
+ severity = [1, 2, 3, 4, 5] corresponding to radius=[2, 3, 4, 6, 8].
94
+ severity mainly refer to KADID-10K.
95
+
96
+ @param img: Input image, H x W x 3, value range [0, 255]
97
+ @param severity: Severity of distortion, [0, 5]
98
+ @return: Degraded image, H x W x 3, value range [0, 255]
99
+ """
100
+ c = [2, 3, 4, 6, 8][severity - 1]
101
+ img = np.array(img) / 255.
102
+ kernel = gen_disk(radius=c)
103
+ img_lq = []
104
+ for i in range(3):
105
+ img_lq.append(cv2.filter2D(img[:, :, i], -1, kernel))
106
+ img_lq = np.array(img_lq).transpose((1, 2, 0))
107
+ img_lq = np.clip(img_lq, 0, 1) * 255
108
+ return img_lq.round().astype(np.uint8)
109
+
110
+
111
+ def blur_zoom(img, severity=1):
112
+ """
113
+ Zoom Blur.
114
+ severity = [1, 2, 3, 4, 5] corresponding to radius=
115
+ [np.arange(1, 1.03, 0.02),
116
+ np.arange(1, 1.06, 0.02),
117
+ np.arange(1, 1.10, 0.02),
118
+ np.arange(1, 1.15, 0.02),
119
+ np.arange(1, 1.21, 0.02)].
120
+ severity mainly refer to Imagecorruptions.
121
+
122
+ @param img: Input image, H x W x 3, value range [0, 255]
123
+ @param severity: Severity of distortion, [0, 5]
124
+ @return: Degraded image, H x W x 3, value range [0, 255]
125
+ """
126
+ c = [np.arange(1, 1.03, 0.02),
127
+ np.arange(1, 1.06, 0.02),
128
+ np.arange(1, 1.10, 0.02),
129
+ np.arange(1, 1.15, 0.02),
130
+ np.arange(1, 1.21, 0.02)][severity - 1]
131
+ img = (np.array(img) / 255.).astype(np.float32)
132
+ h, w = img.shape[:2]
133
+ img_lq = np.zeros_like(img)
134
+ for zoom_factor in c:
135
+ zoom_layer = clipped_zoom(img, zoom_factor)
136
+ img_lq += zoom_layer[:h, :w, :]
137
+ img_lq = (img + img_lq) / (len(c) + 1)
138
+ img_lq = np.clip(img_lq, 0, 1) * 255
139
+ return img_lq.round().astype(np.uint8)
140
+
141
+
142
+ def blur_jitter(img, severity=1):
143
+ """
144
+ Jitter Blur.
145
+ severity = [1, 2, 3, 4, 5] corresponding to shift=[1, 2, 3, 4, 5].
146
+ severity mainly refer to KADID-10K.
147
+
148
+ @param img: Input image, H x W x 3, value range [0, 255]
149
+ @param severity: Severity of distortion, [0, 5]
150
+ @return: Degraded image, H x W x 3, value range [0, 255]
151
+ """
152
+ c = [1, 2, 3, 4, 5][severity - 1]
153
+ img = np.array(img)
154
+ img_lq = shuffle_pixels_njit(img, shift=c, iteration=1)
155
+ return np.uint8(img_lq)
data/degradation_toolkit/x_distortion/brightness.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import cv2
3
+ from .helper import gen_lensmask
4
+
5
+
6
+ def brightness_brighten_shfit_HSV(img, severity=1):
7
+ """
8
+ The RGB image is mapping to HSV, and then enhance the brightness by V channel
9
+ severity=[1,2,3,4,5] is corresponding to c=[0.1, 0.2, 0.3, 0.4, 0.5]
10
+
11
+ @param img: Input image, H x W x RGB, value range [0, 255]
12
+ @param severity: Severity of distortion, [1, 5]
13
+ @return: Degraded image, H x W x RGB, value range [0, 255]
14
+ """
15
+ c = [0.1, 0.2, 0.3, 0.4, 0.5][severity-1]
16
+ img = np.float32(np.array(img) / 255.)
17
+ img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
18
+ img_hsv[:, :, 2] += c
19
+ img_lq = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB)
20
+ return np.uint8(np.clip(img_lq, 0, 1) * 255.)
21
+
22
+
23
+ def brightness_brighten_shfit_RGB(img, severity=1):
24
+ """
25
+ The RGB image is directly enhanced by RGB mean shift
26
+ severity=[1,2,3,4,5] is corresponding to c=[0.1, 0.15, 0.2, 0.27, 0.35]
27
+
28
+ @param img: Input image, H x W x RGB, value range [0, 255]
29
+ @param severity: Severity of distortion, [1, 5]
30
+ @return: Degraded image, H x W x RGB, value range [0, 255]
31
+ """
32
+ c = [0.1, 0.15, 0.2, 0.27, 0.35][severity-1]
33
+ img = np.float32(np.array(img) / 255.)
34
+ img_lq = img + c
35
+ return np.uint8(np.clip(img_lq, 0, 1) * 255.)
36
+
37
+
38
+ def brightness_brighten_gamma_RGB(img, severity=1):
39
+ """
40
+ The RGB image is enhanced by V channel with a gamma function
41
+ severity=[1,2,3,4,5] is corresponding to gamma=[0.8, 0.7, 0.6, 0.45, 0.3]
42
+
43
+ @param img: Input image, H x W x RGB, value range [0, 255]
44
+ @param severity: Severity of distortion, [1, 5]
45
+ @return: Degraded image, H x W x RGB, value range [0, 255]
46
+ """
47
+ gamma = [0.8, 0.7, 0.6, 0.45, 0.3][severity-1]
48
+ img = np.array(img / 255.)
49
+ img_lq = img ** gamma
50
+ return np.uint8(np.clip(img_lq, 0, 1) * 255.)
51
+
52
+
53
+ def brightness_brighten_gamma_HSV(img, severity=1):
54
+ """
55
+ The RGB image is enhanced by V channel with a gamma function
56
+ severity=[1,2,3,4,5] is corresponding to gamma=[0.7, 0.55, 0.4, 0.25, 0.1]
57
+
58
+ @param img: Input image, H x W x RGB, value range [0, 255]
59
+ @param severity: Severity of distortion, [1, 5]
60
+ @return: Degraded image, H x W x RGB, value range [0, 255]
61
+ """
62
+ gamma = [0.7, 0.58, 0.47, 0.36, 0.25][severity-1]
63
+ img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
64
+ img_hsv = np.array(img_hsv / 255.)
65
+ img_hsv[:, :, 2] = img_hsv[:, :, 2] ** gamma
66
+ img_lq = np.uint8(np.clip(img_hsv, 0, 1) * 255.)
67
+ img_lq = cv2.cvtColor(img_lq, cv2.COLOR_HSV2RGB)
68
+ return img_lq
69
+
70
+
71
+ def brightness_darken_shfit_HSV(img, severity=1):
72
+ """
73
+ The RGB image is mapping to HSV, and then darken the brightness by V channel
74
+ severity=[1,2,3,4,5] is corresponding to c=[0.1, 0.2, 0.3, 0.4, 0.5]
75
+
76
+ @param img: Input image, H x W x RGB, value range [0, 255]
77
+ @param severity: Severity of distortion, [1, 5]
78
+ @return: Degraded image, H x W x RGB, value range [0, 255]
79
+ """
80
+ c = [0.1, 0.2, 0.3, 0.4, 0.5][severity-1]
81
+ img = np.float32(np.array(img) / 255.)
82
+ img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
83
+ img_hsv[:, :, 2] -= c
84
+ img_lq = cv2.cvtColor(img_hsv, cv2.COLOR_HSV2RGB)
85
+ return np.uint8(np.clip(img_lq, 0, 1) * 255.)
86
+
87
+
88
+ def brightness_darken_shfit_RGB(img, severity=1):
89
+ """
90
+ The RGB image's brightness is directly reduced by RGB mean shift
91
+ severity=[1,2,3,4,5] is corresponding to c=[0.1, 0.15, 0.2, 0.27, 0.35]
92
+
93
+ @param img: Input image, H x W x RGB, value range [0, 255]
94
+ @param severity: Severity of distortion, [1, 5]
95
+ @return: Degraded image, H x W x RGB, value range [0, 255]
96
+ """
97
+ c = [0.1, 0.15, 0.2, 0.27, 0.35][severity-1]
98
+ img = np.float32(np.array(img)/255.)
99
+ img_lq = img - c
100
+ return np.uint8(np.clip(img_lq, 0, 1) * 255.)
101
+
102
+
103
+ def brightness_darken_gamma_RGB(img, severity=1):
104
+ """
105
+ The RGB image is darkened by V channel with a gamma function
106
+ severity=[1,2,3,4,5] is corresponding to gamma=[1.4, 1.7, 2.1, 2.6, 3.2]
107
+
108
+ @param img: Input image, H x W x RGB, value range [0, 255]
109
+ @param severity: Severity of distortion, [1, 5]
110
+ @return: Degraded image, H x W x RGB, value range [0, 255]
111
+ """
112
+ gamma = [1.4, 1.7, 2.1, 2.6, 3.2][severity-1]
113
+ img = np.array(img / 255.)
114
+ img_lq = img ** gamma
115
+ return np.uint8(np.clip(img_lq, 0, 1) * 255.)
116
+
117
+
118
+ def brightness_darken_gamma_HSV(img, severity=1):
119
+ """
120
+ The RGB image is enhanced by V channel with a gamma function
121
+ severity=[1,2,3,4,5] is corresponding to gamma=[1.5, 1.8, 2.2, 2.7, 3.5]
122
+
123
+ @param img: Input image, H x W x RGB, value range [0, 255]
124
+ @param severity: Severity of distortion, [1, 5]
125
+ @return: Degraded image, H x W x RGB, value range [0, 255]
126
+ """
127
+ gamma = [1.5, 1.8, 2.2, 2.7, 3.5][severity-1]
128
+ img_hsv = cv2.cvtColor(img, cv2.COLOR_RGB2HSV)
129
+ img_hsv = np.array(img_hsv / 255.)
130
+ img_hsv[:, :, 2] = img_hsv[:, :, 2] ** gamma
131
+ img_lq = np.uint8(np.clip(img_hsv, 0, 1) * 255.)
132
+ img_lq = cv2.cvtColor(img_lq, cv2.COLOR_HSV2RGB)
133
+ return img_lq
134
+
135
+
136
+ def brightness_vignette(img, severity=1):
137
+ """
138
+ The RGB image is suffered from the vignette effect.
139
+ severity=[1,2,3,4,5] is corresponding to gamma=[0.5, 0.875, 1.25, 1.625, 2]
140
+
141
+ @param img: Input image, H x W x RGB, value range [0, 255]
142
+ @param severity: Severity of distortion, [1, 5]
143
+ @return: Degraded image, H x W x RGB, value range [0, 255]
144
+ """
145
+ gamma = [0.5, 0.875, 1.25, 1.625, 2][severity - 1]
146
+ img = np.array(img)
147
+ h, w = img.shape[:2]
148
+ mask = gen_lensmask(h, w, gamma=gamma)[:, :, None]
149
+ img_lq = mask * img
150
+ return np.uint8(np.clip(img_lq, 0, 255))
data/degradation_toolkit/x_distortion/compression.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from PIL import Image
3
+ from io import BytesIO
4
+
5
+
6
+ def compression_jpeg(img, severity=1):
7
+ """
8
+ JPEG compression on a NumPy array.
9
+ severity=[1,2,3,4,5] corresponding to quality=[25,18,15,10,7].
10
+ from https://github.com/bethgelab/imagecorruptions/blob/master/imagecorruptions/corruptions.py
11
+
12
+ @param img: Input image as NumPy array, H x W x C, value range [0, 255]
13
+ @param severity: Severity of distortion, [1, 5]
14
+ @return: Degraded image as NumPy array, H x W x C, value range [0, 255]
15
+ """
16
+ assert img.dtype == np.uint8, "Image array should have dtype of np.uint8"
17
+ assert severity in [1, 2, 3, 4, 5], 'Severity must be an integer between 1 and 5.'
18
+
19
+ quality = [25, 18, 12, 8, 5][severity - 1]
20
+ output = BytesIO()
21
+ gray_scale = False
22
+ if img.shape[2] == 1: # Check if the image is grayscale
23
+ gray_scale = True
24
+ # Convert NumPy array to PIL Image
25
+ img = Image.fromarray(img)
26
+ if gray_scale:
27
+ img = img.convert('L')
28
+ else:
29
+ img = img.convert('RGB')
30
+ # Save image to a bytes buffer using JPEG compression
31
+ img.save(output, 'JPEG', quality=quality)
32
+ output.seek(0)
33
+ # Load the compressed image from the bytes buffer
34
+ img_lq = Image.open(output)
35
+ # Convert PIL Image back to NumPy array
36
+ if gray_scale:
37
+ img_lq = np.array(img_lq.convert('L'))
38
+ img_lq = img_lq.reshape((img_lq.shape[0], img_lq.shape[1], 1)) # Maintaining the original shape (H, W, 1)
39
+ else:
40
+ img_lq = np.array(img_lq.convert('RGB'))
41
+ return img_lq
42
+
43
+
44
+ def compression_jpeg_2000(img, severity=1):
45
+ """
46
+ JPEG2000 compression on a NumPy array.
47
+ severity=[1,2,3,4,5] corresponding to quality=[29,27.5,26,24.5,23], quality_mode='dB'.
48
+
49
+ @param x: Input image as NumPy array, H x W x C, value range [0, 255]
50
+ @param severity: Severity of distortion, [1, 5]
51
+ @return: Degraded image as NumPy array, H x W x C, value range [0, 255]
52
+ """
53
+ assert img.dtype == np.uint8, "Image array should have dtype of np.uint8"
54
+ assert severity in [1, 2, 3, 4, 5], 'Severity must be an integer between 1 and 5.'
55
+
56
+ quality = [29, 27.5, 26, 24.5, 23][severity - 1]
57
+ output = BytesIO()
58
+ gray_scale = False
59
+ if img.shape[2] == 1: # Check if the image is grayscale
60
+ gray_scale = True
61
+ # Convert NumPy array to PIL Image
62
+ img = Image.fromarray(img)
63
+ if gray_scale:
64
+ img = img.convert('L')
65
+ else:
66
+ img = img.convert('RGB')
67
+ # Save image to a bytes buffer using JPEG compression
68
+ img.save(output, 'JPEG2000', quality_mode='dB', quality_layers=[quality])
69
+ output.seek(0)
70
+ # Load the compressed image from the bytes buffer
71
+ img_lq = Image.open(output)
72
+ # Convert PIL Image back to NumPy array
73
+ if gray_scale:
74
+ img_lq = np.array(img_lq.convert('L'))
75
+ img_lq = img_lq.reshape((img_lq.shape[0], img_lq.shape[1], 1)) # Maintaining the original shape (H, W, 1)
76
+ else:
77
+ img_lq = np.array(img_lq.convert('RGB'))
78
+ return img_lq
data/degradation_toolkit/x_distortion/contrast.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ from PIL import Image
4
+ from PIL import ImageEnhance
5
+
6
+
7
+ def contrast_weaken_scale(img, severity=1):
8
+ """
9
+ Contrast Weaken by scaling.
10
+ severity=[1, 2, 3, 4, 5] corresponding to scale=[0.75, 0.6, 0.45, 0.3, 0.2].
11
+
12
+ @param img: Input image, H x W x 3, value range [0, 255]
13
+ @param severity: Severity of distortion, [1, 5]
14
+ @return: Degraded image, H x W x 3, value range [0, 255]
15
+ """
16
+ c = [0.75, 0.6, 0.45, 0.3, 0.2][severity - 1]
17
+ img = Image.fromarray(img)
18
+ enhancer = ImageEnhance.Contrast(img)
19
+ img = enhancer.enhance(c)
20
+ img = np.uint8(np.clip(np.array(img), 0, 255))
21
+ return img
22
+
23
+
24
+ def contrast_weaken_stretch(img, severity=1):
25
+ """
26
+ Contrast Weaken by stretching.
27
+ severity=[1, 2, 3, 4, 5] corresponding to scale=[1.0, 0.9, 0.8, 0.6, 0.4].
28
+ severity mainly refer to PieAPP.
29
+
30
+ @param img: Input image, H x W x 3, value range [0, 255]
31
+ @param severity: Severity of distortion, [1, 5]
32
+ @return: Degraded image, H x W x 3, value range [0, 255]
33
+ """
34
+ c = [1.0, 0.9, 0.8, 0.6, 0.4][severity - 1]
35
+ img = np.array(img) / 255.
36
+ img_mean = np.mean(img, axis=(0,1), keepdims=True)
37
+ img = 1. / (1 + (img_mean / (img + 1e-12)) ** c)
38
+ img = np.uint8(np.clip(img, 0, 1) * 255)
39
+ return img
40
+
41
+
42
+ def contrast_strengthen_scale(img, severity=1):
43
+ """
44
+ Contrast Strengthen by scaling.
45
+ severity=[1, 2, 3, 4, 5] corresponding to scale=[1.4, 1.7, 2.1, 2.6, 4.0].
46
+
47
+ @param img: Input image, H x W x 3, value range [0, 255]
48
+ @param severity: Severity of distortion, [1, 5]
49
+ @return: Degraded image, H x W x 3, value range [0, 255]
50
+ """
51
+ c = [1.4, 1.7, 2.1, 2.6, 4.0][severity - 1]
52
+ img = Image.fromarray(img)
53
+ enhancer = ImageEnhance.Contrast(img)
54
+ img = enhancer.enhance(c)
55
+ img = np.uint8(np.clip(np.array(img), 0, 255))
56
+ return img
57
+
58
+
59
+ def contrast_strengthen_stretch(img, severity=1):
60
+ """
61
+ Contrast Strengthen by stretching.
62
+ severity=[1, 2, 3, 4, 5] corresponding to scale=[2.0, 4.0, 6.0, 8.0, 10.0].
63
+ severity mainly refer to PieAPP.
64
+
65
+ @param img: Input image, H x W x 3, value range [0, 255]
66
+ @param severity: Severity of distortion, [1, 5]
67
+ @return: Degraded image, H x W x 3, value range [0, 255]
68
+ """
69
+ c = [2.0, 4.0, 6.0, 8.0, 10.0][severity - 1]
70
+ img = np.array(img) / 255.
71
+ img_mean = np.mean(img, axis=(0,1), keepdims=True)
72
+ img = 1. / (1 + (img_mean / (img + 1e-12)) ** c)
73
+ img = np.uint8(np.clip(img, 0, 1) * 255)
74
+ return img
data/degradation_toolkit/x_distortion/helper.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ from scipy.ndimage import zoom as scizoom
3
+ from numba import njit, prange
4
+ import numpy as np
5
+ import math
6
+
7
+
8
+ def gen_lensmask(h, w, gamma):
9
+ """
10
+ Generate lens mask with shape (h, w).
11
+ For point (i, j),
12
+ distance = [(i - h // 2)^2 + (j - w // 2)^2] ^ (1/2) / [h // 2)^2 + (w // 2)^2] ^ (1/2)
13
+ mask = scale * (1 - distance) ^ gamma
14
+
15
+ @param h: height
16
+ @param w: width
17
+ @param gamma: exponential factor
18
+ @return: Mask, H x W
19
+ """
20
+ dist1 = np.array([list(range(w))] * h) - w // 2
21
+ dist2 = np.array([list(range(h))] * w) - h // 2
22
+ dist2 = np.transpose(dist2, (1, 0))
23
+ dist = np.sqrt((dist1 ** 2 + dist2 ** 2)) / np.sqrt((w ** 2 + h ** 2) / 4)
24
+ mask = (1 - dist) ** gamma
25
+ return mask
26
+
27
+
28
+ def gen_disk(radius, dtype=np.float32):
29
+ if radius <= 8:
30
+ L = np.arange(-8, 8 + 1)
31
+ else:
32
+ L = np.arange(-radius, radius + 1)
33
+ X, Y = np.meshgrid(L, L)
34
+ disk = np.array((X ** 2 + Y ** 2) <= radius ** 2, dtype=dtype)
35
+ disk /= np.sum(disk)
36
+ return disk
37
+
38
+
39
+ # modification of https://github.com/FLHerne/mapgen/blob/master/diamondsquare.py
40
+ def plasma_fractal(mapsize=256, wibbledecay=3):
41
+ """
42
+ Generate a heightmap using diamond-square algorithm.
43
+ Return square 2d array, side length 'mapsize', of floats in range 0-255.
44
+ 'mapsize' must be a power of two.
45
+ """
46
+ assert (mapsize & (mapsize - 1) == 0)
47
+ maparray = np.empty((mapsize, mapsize), dtype=np.float_)
48
+ maparray[0, 0] = 0
49
+ stepsize = mapsize
50
+ wibble = 100
51
+
52
+ def wibbledmean(array):
53
+ return array / 4 + wibble * np.random.uniform(-wibble, wibble,
54
+ array.shape)
55
+
56
+ def fillsquares():
57
+ """For each square of points stepsize apart,
58
+ calculate middle value as mean of points + wibble"""
59
+ cornerref = maparray[0:mapsize:stepsize, 0:mapsize:stepsize]
60
+ squareaccum = cornerref + np.roll(cornerref, shift=-1, axis=0)
61
+ squareaccum += np.roll(squareaccum, shift=-1, axis=1)
62
+ maparray[stepsize // 2:mapsize:stepsize,
63
+ stepsize // 2:mapsize:stepsize] = wibbledmean(squareaccum)
64
+
65
+ def filldiamonds():
66
+ """For each diamond of points stepsize apart,
67
+ calculate middle value as mean of points + wibble"""
68
+ mapsize = maparray.shape[0]
69
+ drgrid = maparray[stepsize // 2:mapsize:stepsize,
70
+ stepsize // 2:mapsize:stepsize]
71
+ ulgrid = maparray[0:mapsize:stepsize, 0:mapsize:stepsize]
72
+ ldrsum = drgrid + np.roll(drgrid, 1, axis=0)
73
+ lulsum = ulgrid + np.roll(ulgrid, -1, axis=1)
74
+ ltsum = ldrsum + lulsum
75
+ maparray[0:mapsize:stepsize,
76
+ stepsize // 2:mapsize:stepsize] = wibbledmean(ltsum)
77
+ tdrsum = drgrid + np.roll(drgrid, 1, axis=1)
78
+ tulsum = ulgrid + np.roll(ulgrid, -1, axis=0)
79
+ ttsum = tdrsum + tulsum
80
+ maparray[stepsize // 2:mapsize:stepsize,
81
+ 0:mapsize:stepsize] = wibbledmean(ttsum)
82
+
83
+ while stepsize >= 2:
84
+ fillsquares()
85
+ filldiamonds()
86
+ stepsize //= 2
87
+ wibble /= wibbledecay
88
+
89
+ maparray -= maparray.min()
90
+ return maparray / maparray.max()
91
+
92
+
93
+ def clipped_zoom(img, zoom_factor):
94
+ # clipping along the width dimension:
95
+ ch0 = int(np.ceil(img.shape[0] / float(zoom_factor)))
96
+ top0 = (img.shape[0] - ch0) // 2
97
+
98
+ # clipping along the height dimension:
99
+ ch1 = int(np.ceil(img.shape[1] / float(zoom_factor)))
100
+ top1 = (img.shape[1] - ch1) // 2
101
+
102
+ img = scizoom(img[top0:top0 + ch0, top1:top1 + ch1],
103
+ (zoom_factor, zoom_factor, 1), order=1)
104
+
105
+ return img
106
+
107
+
108
+ def getOptimalKernelWidth1D(radius, sigma):
109
+ return radius * 2 + 1
110
+
111
+
112
+ def gauss_function(x, mean, sigma):
113
+ return (np.exp(- (x - mean)**2 / (2 * (sigma**2)))) / (np.sqrt(2 * np.pi) * sigma)
114
+
115
+
116
+ def getMotionBlurKernel(width, sigma):
117
+ k = gauss_function(np.arange(width), 0, sigma)
118
+ Z = np.sum(k)
119
+ return k/Z
120
+
121
+
122
+ def shift(image, dx, dy):
123
+ if(dx < 0):
124
+ shifted = np.roll(image, shift=image.shape[1]+dx, axis=1)
125
+ shifted[:,dx:] = shifted[:,dx-1:dx]
126
+ elif(dx > 0):
127
+ shifted = np.roll(image, shift=dx, axis=1)
128
+ shifted[:,:dx] = shifted[:,dx:dx+1]
129
+ else:
130
+ shifted = image
131
+
132
+ if(dy < 0):
133
+ shifted = np.roll(shifted, shift=image.shape[0]+dy, axis=0)
134
+ shifted[dy:,:] = shifted[dy-1:dy,:]
135
+ elif(dy > 0):
136
+ shifted = np.roll(shifted, shift=dy, axis=0)
137
+ shifted[:dy,:] = shifted[dy:dy+1,:]
138
+ return shifted
139
+
140
+
141
+ def _motion_blur(x, radius, sigma, angle):
142
+ width = getOptimalKernelWidth1D(radius, sigma)
143
+ kernel = getMotionBlurKernel(width, sigma)
144
+ point = (width * np.sin(np.deg2rad(angle)), width * np.cos(np.deg2rad(angle)))
145
+ hypot = math.hypot(point[0], point[1])
146
+
147
+ blurred = np.zeros_like(x, dtype=np.float32)
148
+ for i in range(width):
149
+ dy = -math.ceil(((i*point[0]) / hypot) - 0.5)
150
+ dx = -math.ceil(((i*point[1]) / hypot) - 0.5)
151
+ if (np.abs(dy) >= x.shape[0] or np.abs(dx) >= x.shape[1]):
152
+ # simulated motion exceeded image borders
153
+ break
154
+ shifted = shift(x, dx, dy)
155
+ blurred = blurred + kernel[i] * shifted
156
+ return blurred
157
+
158
+
159
+ # Numba nopython compilation to shuffle_pixles
160
+ @njit()
161
+ def shuffle_pixels_njit(img, shift, iteration):
162
+ height, width = img.shape[:2]
163
+ # locally shuffle pixels
164
+ for _ in range(iteration):
165
+ for h in range(height - shift, shift, -1):
166
+ for w in range(width - shift, shift, -1):
167
+ dx, dy = np.random.randint(-shift, shift, size=(2,))
168
+ h_prime, w_prime = h + dy, w + dx
169
+ # swap
170
+ img[h, w], img[h_prime, w_prime] = img[h_prime, w_prime], img[h, w]
171
+ return img
data/degradation_toolkit/x_distortion/noise.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ import skimage as sk
4
+
5
+
6
+ def noise_gaussian_RGB(img, severity=1):
7
+ """
8
+ Additive Gaussian noise in RGB channels.
9
+ severity=[1, 2, 3, 4, 5] is corresponding to sigma=[0.05, 0.1, 0.15, 0.2, 0.25].
10
+ severity mainly refer to KADID-10K and Imagecorruptions.
11
+
12
+ @param img: Input image, H x W x 3, value range [0, 255]
13
+ @param severity: Severity of distortion, [1, 5]
14
+ @return: Degraded image, H x W x 3, value range [0, 255]
15
+ """
16
+ sigma = [0.05, 0.1, 0.15, 0.2, 0.25][severity-1]
17
+ img = np.array(img) / 255.
18
+ noise = np.random.normal(0, sigma, img.shape)
19
+ img_lq = img + noise
20
+ return np.uint8(np.clip(img_lq, 0, 1) * 255.)
21
+
22
+
23
+ def noise_gaussian_YCrCb(img, severity=1):
24
+ """
25
+ Additive Gaussian noise with higher noise in color channels.
26
+ severity=[1, 2, 3, 4, 5] is corresponding to
27
+ sigma_l=[0.05, 0.06, 0.07, 0.08, 0.09],
28
+ sigma_r=[1, 1.45, 1.9, 2.35, 2.8],
29
+ sigma_b=[1, 1.45, 1.9, 2.35, 2.8].
30
+
31
+ @param img: Input image, H x W x 3, value range [0, 255]
32
+ @param severity: Severity of distortion, [1, 5]
33
+ @return: Degraded image, H x W x 3, value range [0, 255]
34
+ """
35
+ sigma_l = [0.05, 0.06, 0.07, 0.08, 0.09][severity-1]
36
+ sigma_r = sigma_l * [1, 1.45, 1.9, 2.35, 2.8][severity - 1]
37
+ sigma_b = sigma_l * [1, 1.45, 1.9, 2.35, 2.8][severity - 1]
38
+ h, w = img.shape[:2]
39
+ img = np.float32(np.array(img) / 255.)
40
+ img = cv2.cvtColor(img, cv2.COLOR_RGB2YCR_CB)
41
+ noise_l = np.expand_dims(np.random.normal(0, sigma_l, (h, w)), 2)
42
+ noise_r = np.expand_dims(np.random.normal(0, sigma_r, (h, w)), 2)
43
+ noise_b = np.expand_dims(np.random.normal(0, sigma_b, (h, w)), 2)
44
+ noise = np.concatenate((noise_l, noise_r, noise_b), axis=2)
45
+ img_lq = np.float32(img + noise)
46
+ img_lq = cv2.cvtColor(img_lq, cv2.COLOR_YCR_CB2RGB)
47
+ return np.uint8(np.clip(img_lq, 0, 1) * 255.)
48
+
49
+
50
+ def noise_speckle(img, severity=1):
51
+ """
52
+ Multiplicative Gaussian noise.
53
+ severity=[1, 2, 3, 4, 5] is corresponding to sigma=[0.14, 0.21, 0.28, 0.35, 0.42].
54
+
55
+ @param img: Input image, H x W x 3, value range [0, 255]
56
+ @param severity: Severity of distortion, [1, 5]
57
+ @return: Degraded image, H x W x 3, value range [0, 255]
58
+ """
59
+ c = [0.14, 0.21, 0.28, 0.35, 0.42][severity - 1]
60
+ img = np.array(img) / 255.
61
+ noise = img * np.random.normal(size=img.shape, scale=c)
62
+ img_lq = img + noise
63
+ return np.uint8(np.clip(img_lq, 0, 1) * 255.)
64
+
65
+
66
+ def noise_spatially_correlated(img, severity=1):
67
+ """
68
+ Spatially correlated noise.
69
+ severity=[1, 2, 3, 4, 5] is corresponding to sigma=[0.08, 0.11, 0.14, 0.18, 0.22].
70
+
71
+ @param img: Input image, H x W x 3, value range [0, 255]
72
+ @param severity: Severity of distortion, [1, 5]
73
+ @return: Degraded image, H x W x 3, value range [0, 255]
74
+ """
75
+ sigma = [0.08, 0.11, 0.14, 0.18, 0.22][severity - 1]
76
+ img = np.array(img) / 255.
77
+ noise = np.random.normal(0, sigma, img.shape)
78
+ img_lq = img + noise
79
+ img_lq = cv2.blur(img_lq, [3, 3])
80
+ return np.uint8(np.clip(img_lq, 0, 1) * 255.)
81
+
82
+
83
+ def noise_poisson(img, severity=1):
84
+ """
85
+ Poisson noise.
86
+ PieAPP keeps this distortion free of additional parameters.
87
+ The default:
88
+ c = vals = len(np.unique(image))
89
+ vals = 2 ** np.ceil(np.log2(vals))
90
+ But Imagecorruptions introduces a extra parameter c
91
+ ranging [60, 25, 12, 5, 3] for sigma = sqrt(I / c).
92
+ severity=[1, 2, 3, 4, 5] is corresponding to c=[80, 60, 40, 25, 15].
93
+
94
+ @param img: Input image, H x W x 3, value range [0, 255]
95
+ @param severity: Severity of distortion, [1, 5]
96
+ @return: Degraded image, H x W x 3, value range [0, 255]
97
+ """
98
+ c = [80, 60, 40, 25, 15][severity - 1]
99
+ img = np.array(img) / 255.
100
+ img_lq = np.random.poisson(img * c) / float(c)
101
+ return np.uint8(np.clip(img_lq, 0, 1) * 255.)
102
+
103
+
104
+ def noise_impulse(img, severity=1):
105
+ """
106
+ Impulse noise is also known as salt&pepper noise.
107
+ PieAPP introduce the range [1e-4, 0.045].
108
+ severity=[1, 2, 3, 4, 5] is corresponding to amount=[0.01, 0.03, 0.05, 0.07, 0.10].
109
+
110
+ @param img: Input image, H x W x 3, value range [0, 255]
111
+ @param severity: Severity of distortion, [1, 5]
112
+ @return: Degraded image, H x W x 3, value range [0, 255]
113
+ """
114
+ c = [0.01, 0.03, 0.05, 0.07, 0.10][severity - 1]
115
+ img = np.array(img) / 255.
116
+ img_lq = sk.util.random_noise(img, mode='s&p', amount=c)
117
+ return np.uint8(np.clip(img_lq, 0, 1) * 255.)
data/degradation_toolkit/x_distortion/oversharpen.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+
5
+ def oversharpen(img, severity=1):
6
+ """
7
+ OverSharpening filter on a NumPy array.
8
+ severity = [1, 5] corresponding to amount = [2, 4, 6, 8, 10]
9
+
10
+ @param x: Input image as NumPy array, H x W x C, value range [0, 255]
11
+ @param severity: Severity of distortion, [1, 5]
12
+ @return: Degraded image as NumPy array, H x W x C, value range [0, 255]
13
+ """
14
+ assert img.dtype == np.uint8, "Image array should have dtype of np.uint8"
15
+ assert severity in [1, 2, 3, 4, 5], 'Severity must be an integer between 1 and 5.'
16
+
17
+ amount = [2, 2.8, 4, 6, 8][severity - 1]
18
+
19
+ # Setting the kernel size and sigmaX value for Gaussian blur
20
+ # In OpenCV's Size(kernel_width, kernel_height), both kernel_width and kernel_height
21
+ # should be odd numbers; for example, we can use (2*radius+1, 2*radius+1)
22
+ blur_radius = 2 # The radius is the blur radius used to set the size of the Gaussian kernel
23
+ sigmaX = 0
24
+
25
+ # Create a blurred/smoothed version of the image
26
+ blurred = cv2.GaussianBlur(img, (2*blur_radius+1, 2*blur_radius+1), sigmaX)
27
+
28
+ # Compute the sharpened image with an enhancement factor of 'amount'
29
+ sharpened = cv2.addWeighted(img, 1 + amount, blurred, -amount, 0)
30
+
31
+ return sharpened
data/degradation_toolkit/x_distortion/pixelate.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from PIL import Image
4
+
5
+
6
+ def pixelate(img, severity=1):
7
+ """
8
+ Pixelate.
9
+ severity=[1, 2, 3, 4, 5] corresponding to sigma=[0.5, 0.4, 0.3, 0.25, 0.2].
10
+ severity mainly refer to Imagecorruptions.
11
+
12
+ @param img: Input image, H x W x 3, value range [0, 255]
13
+ @param severity: Severity of distortion, [1, 5]
14
+ @return: Degraded image, H x W x 3, value range [0, 255]
15
+ """
16
+ c = [0.5, 0.4, 0.3, 0.25, 0.2][severity - 1]
17
+ h, w = np.array(img).shape[:2]
18
+ img = Image.fromarray(img)
19
+ img = img.resize((int(w * c), int(h * c)), Image.BOX)
20
+ img = img.resize((w, h), Image.NEAREST)
21
+ return np.array(img).astype(np.uint8)
data/degradation_toolkit/x_distortion/quantization.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
+ from PIL import Image
4
+ from skimage.filters import threshold_multiotsu
5
+
6
+
7
+
8
+ def quantization_otsu(img, severity=1):
9
+ """
10
+ Color Quantization using OTSU method.
11
+ severity=[1, 2, 3, 4, 5] corresponding to num_classes=[15, 11, 8, 5, 3].
12
+ severity mainly refer to KADID-10K and Imagecorruptions.
13
+
14
+ @param img: Input image, H x W x 3, value range [0, 255]
15
+ @param severity: Severity of distortion, [1, 5]
16
+ @return: Degraded image, H x W x 3, value range [0, 255]
17
+ """
18
+ c = [15, 11, 8, 5, 3][severity - 1]
19
+ img = np.array(img).astype(np.float32)
20
+ for i in range(img.shape[2]):
21
+ img_gray = img[:, :, i]
22
+ thresholds = threshold_multiotsu(img_gray, classes=c, nbins=30) # modify skimage
23
+ v_max = img_gray.max()
24
+ v_min = img_gray.min()
25
+ img[:, :, i] = np.digitize(img[:, :, i], bins=thresholds) * (v_max - v_min) / c + v_min
26
+ img = np.clip(img, 0, 255)
27
+ return img
28
+
29
+
30
+ def quantization_median(img, severity=1):
31
+ """
32
+ Color Quantization using Histogram Median.
33
+ severity=[1, 2, 3, 4, 5] corresponding to num_classes=[20, 15, 10, 6, 3].
34
+ severity mainly refer to KADID-10K and Imagecorruptions.
35
+
36
+ @param img: Input image, H x W x 3, value range [0, 255]
37
+ @param severity: Severity of distortion, [1, 5]
38
+ @return: Degraded image, H x W x 3, value range [0, 255]
39
+ """
40
+ c = [20, 15, 10, 6, 3][severity - 1]
41
+ for i in range(img.shape[2]):
42
+ img_gray = Image.fromarray(img[:, :, i])
43
+ img_gray = img_gray.quantize(colors=c, method=Image.Quantize.MEDIANCUT).convert("L")
44
+ img[:, :, i] = np.array(img_gray)
45
+ img = np.clip(img, 0, 255)
46
+ return img
47
+
48
+
49
+ def quantization_hist(img, severity=1):
50
+ """
51
+ Color Quantization using Histogram Equalization.
52
+ severity=[1, 2, 3, 4, 5] corresponding to num_classes=[24, 16, 8, 6, 4].
53
+ severity mainly refer to KADID-10K and Imagecorruptions.
54
+
55
+ @param img: Input image, H x W x 3, value range [0, 255]
56
+ @param severity: Severity of distortion, [1, 5]
57
+ @return: Degraded image, H x W x 3, value range [0, 255]
58
+ """
59
+ c = [24, 16, 8, 6, 4][severity - 1]
60
+ hist, _ = np.histogram(img.flatten(), bins=c, range=[0, 255])
61
+ cdf = hist.cumsum()
62
+ cdf_m = np.ma.masked_equal(cdf, 0)
63
+ cdf_m = (cdf_m - cdf_m.min()) * 255 / (cdf_m.max() - cdf_m.min())
64
+ cdf = np.ma.filled(cdf_m, 0).astype('uint8')
65
+ img = np.uint8(np.round(img / 255 * (c - 1)))
66
+ img = cdf[img]
67
+ img = np.clip(img, 0, 255)
68
+ return img
data/degradation_toolkit/x_distortion/saturate.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+
4
+
5
+ def saturate_weaken_HSV(img, severity=1):
6
+ """
7
+ Saturate Weaken by scaling S channel in HSV.
8
+ severity=[1, 2, 3, 4, 5] corresponding to scale=[0.7, 0.55, 0.4, 0.2, 0.0].
9
+ severity mainly refer to KADID-10K.
10
+
11
+ @param img: Input image, H x W x 3, value range [0, 255]
12
+ @param severity: Severity of distortion, [1, 5]
13
+ @return: Degraded image, H x W x 3, value range [0, 255]
14
+ """
15
+ c = [0.7, 0.55, 0.4, 0.2, 0.0][severity - 1]
16
+ hsv = np.array(cv2.cvtColor(img, cv2.COLOR_RGB2HSV), dtype=np.float32)
17
+ hsv[:, :, 1] = c * hsv[:, :, 1]
18
+ hsv = np.uint8(np.clip(hsv, 0, 255))
19
+ img = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
20
+ return img
21
+
22
+
23
+ def saturate_weaken_YCrCb(img, severity=1):
24
+ """
25
+ Saturate Weaken by scaling S channel in YCrCb.
26
+ severity=[1, 2, 3, 4, 5] corresponding to scale=[0.6, 0.4, 0.2, 0.1, 0.0].
27
+ severity mainly refer to PieAPP.
28
+
29
+ @param img: Input image, H x W x 3, value range [0, 255]
30
+ @param severity: Severity of distortion, [1, 5]
31
+ @return: Degraded image, H x W x 3, value range [0, 255]
32
+ """
33
+ c = [0.6, 0.4, 0.2, 0.1, 0.0][severity - 1]
34
+ ycrcb = np.array(cv2.cvtColor(img, cv2.COLOR_RGB2YCR_CB), dtype=np.float32)
35
+ ycrcb[:, :, 1] = 128 + (ycrcb[:, :, 1] - 128) * c
36
+ ycrcb[:, :, 2] = 128 + (ycrcb[:, :, 2] - 128) * c
37
+ ycrcb = np.uint8(np.clip(ycrcb, 0, 255))
38
+ img = cv2.cvtColor(ycrcb, cv2.COLOR_YCR_CB2RGB)
39
+ return img
40
+
41
+
42
+ def saturate_strengthen_HSV(img, severity=1):
43
+ """
44
+ Saturate Strengthen by scaling S channel in HSV.
45
+ severity=[1, 2, 3, 4, 5] corresponding to scale=[3.0, 6.0, 12.0, 20.0, 64.0].
46
+
47
+ @param img: Input image, H x W x 3, value range [0, 255]
48
+ @param severity: Severity of distortion, [1, 5]
49
+ @return: Degraded image, H x W x 3, value range [0, 255]
50
+ """
51
+ c = [3.0, 6.0, 12.0, 20.0, 64.0][severity - 1]
52
+ hsv = np.array(cv2.cvtColor(img, cv2.COLOR_RGB2HSV), dtype=np.float32)
53
+ hsv[:, :, 1] = c * hsv[:, :, 1]
54
+ hsv = np.uint8(np.clip(hsv, 0, 255))
55
+ img = cv2.cvtColor(hsv, cv2.COLOR_HSV2RGB)
56
+ return img
57
+
58
+
59
+ def saturate_strengthen_YCrCb(img, severity=1):
60
+ """
61
+ Saturate Strengthen by scaling S channel in YCrCb.
62
+ severity=[1, 2, 3, 4, 5] corresponding to scale=[2.0, 3.0, 5.0, 8.0, 16.0].
63
+ severity mainly refer to PieAPP.
64
+
65
+ @param img: Input image, H x W x 3, value range [0, 255]
66
+ @param severity: Severity of distortion, [1, 5]
67
+ @return: Degraded image, H x W x 3, value range [0, 255]
68
+ """
69
+ c = [2.0, 3.0, 5.0, 8.0, 16.0][severity - 1]
70
+ ycrcb = np.array(cv2.cvtColor(img, cv2.COLOR_RGB2YCR_CB), dtype=np.float32)
71
+ ycrcb[:, :, 1] = 128 + (ycrcb[:, :, 1] - 128) * c
72
+ ycrcb[:, :, 2] = 128 + (ycrcb[:, :, 2] - 128) * c
73
+ ycrcb = np.uint8(np.clip(ycrcb, 0, 255))
74
+ img = cv2.cvtColor(ycrcb, cv2.COLOR_YCR_CB2RGB)
75
+ return img
data/degradation_toolkit/x_distortion/spatter.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import cv2
2
+ import numpy as np
3
+ from skimage.filters import gaussian
4
+
5
+ def rgb2gray(rgb):
6
+ return np.dot(rgb[..., :3], [0.2989, 0.5870, 0.1140])
7
+
8
+ def spatter(x, severity=1):
9
+ c = [(0.65, 0.3, 4, 0.69, 0.6, 0),
10
+ (0.65, 0.3, 3, 0.68, 0.6, 0),
11
+ (0.65, 0.3, 2, 0.68, 0.5, 0),
12
+ (0.65, 0.3, 1, 0.65, 1.5, 1),
13
+ (0.67, 0.4, 1, 0.65, 1.5, 1)][severity - 1]
14
+ x_PIL = x
15
+ x = np.array(x, dtype=np.float32) / 255.
16
+
17
+ liquid_layer = np.random.normal(size=x.shape[:2], loc=c[0], scale=c[1])
18
+
19
+ liquid_layer = gaussian(liquid_layer, sigma=c[2])
20
+ liquid_layer[liquid_layer < c[3]] = 0
21
+ if c[5] == 0:
22
+ liquid_layer = (liquid_layer * 255).astype(np.uint8)
23
+ dist = 255 - cv2.Canny(liquid_layer, 50, 150)
24
+ dist = cv2.distanceTransform(dist, cv2.DIST_L2, 5)
25
+ _, dist = cv2.threshold(dist, 20, 20, cv2.THRESH_TRUNC)
26
+ dist = cv2.blur(dist, (3, 3)).astype(np.uint8)
27
+ dist = cv2.equalizeHist(dist)
28
+ ker = np.array([[-2, -1, 0], [-1, 1, 1], [0, 1, 2]])
29
+ dist = cv2.filter2D(dist, cv2.CV_8U, ker)
30
+ dist = cv2.blur(dist, (3, 3)).astype(np.float32)
31
+
32
+ m = cv2.cvtColor(liquid_layer * dist, cv2.COLOR_GRAY2BGRA)
33
+ m /= np.max(m, axis=(0, 1))
34
+ m *= c[4]
35
+ # water is pale turqouise
36
+ color = np.concatenate((175 / 255. * np.ones_like(m[..., :1]),
37
+ 238 / 255. * np.ones_like(m[..., :1]),
38
+ 238 / 255. * np.ones_like(m[..., :1])), axis=2)
39
+
40
+ color = cv2.cvtColor(color, cv2.COLOR_BGR2BGRA)
41
+
42
+ if len(x.shape) < 3 or x.shape[2] < 3:
43
+ add_spatter_color = cv2.cvtColor(np.clip(m * color, 0, 1),
44
+ cv2.COLOR_BGRA2BGR)
45
+ add_spatter_gray = rgb2gray(add_spatter_color)
46
+
47
+ return np.clip(x + add_spatter_gray, 0, 1) * 255
48
+
49
+ else:
50
+
51
+ x = cv2.cvtColor(x, cv2.COLOR_BGR2BGRA)
52
+
53
+ return cv2.cvtColor(np.clip(x + m * color, 0, 1),
54
+ cv2.COLOR_BGRA2BGR) * 255
55
+ else:
56
+ m = np.where(liquid_layer > c[3], 1, 0)
57
+ m = gaussian(m.astype(np.float32), sigma=c[4])
58
+ m[m < 0.8] = 0
59
+
60
+ x_rgb = np.array(x_PIL.convert('RGB'))
61
+
62
+ # mud brown
63
+ color = np.concatenate((63 / 255. * np.ones_like(x_rgb[..., :1]),
64
+ 42 / 255. * np.ones_like(x_rgb[..., :1]),
65
+ 20 / 255. * np.ones_like(x_rgb[..., :1])),
66
+ axis=2)
67
+ color *= m[..., np.newaxis]
68
+ if len(x.shape) < 3 or x.shape[2] < 3:
69
+ x *= (1 - m)
70
+ return np.clip(x + rgb2gray(color), 0, 1) * 255
71
+
72
+ else:
73
+ x *= (1 - m[..., np.newaxis])
74
+ return np.clip(x + color, 0, 1) * 255
imgproc.py → data/imgproc.py RENAMED
File without changes
examples/__init__.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from .gradio_tasks import dense_prediction_text, conditional_generation_text, process_dense_prediction_tasks, process_conditional_generation_tasks
2
+ from .gradio_tasks_restoration import image_restoration_text, process_image_restoration_tasks
3
+ from .gradio_tasks_style import style_transfer_text, style_condition_fusion_text, process_style_transfer_tasks, process_style_condition_fusion_tasks
4
+ from .gradio_tasks_tryon import tryon_text, process_tryon_tasks
5
+ from .gradio_tasks_editing import editing_text, process_editing_tasks
6
+ from .gradio_tasks_photodoodle import photodoodle_text, process_photodoodle_tasks
7
+ from .gradio_tasks_editing_subject import editing_with_subject_text, process_editing_with_subject_tasks
8
+ from .gradio_tasks_relighting import relighting_text, process_relighting_tasks
9
+ from .gradio_tasks_unseen import unseen_tasks_text, process_unseen_tasks
10
+ from .gradio_tasks_subject import subject_driven_text, condition_subject_fusion_text, condition_subject_style_fusion_text, style_transfer_with_subject_text, \
11
+ image_restoration_with_subject_text, \
12
+ process_subject_driven_tasks, process_image_restoration_with_subject_tasks, process_style_transfer_with_subject_tasks, process_condition_subject_style_fusion_tasks, \
13
+ process_condition_subject_fusion_tasks
examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9.jpg ADDED

Git LFS Details

  • SHA256: e0c4bde1a615edc572ce74f5e334c7cd035f686bf94d00fa13de1c825a837010
  • Pointer size: 131 Bytes
  • Size of remote file: 228 kB
examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9_ben2-background-removal.jpg ADDED

Git LFS Details

  • SHA256: 59ecf637fce4eb98d75a9f17f005887b62fcf4f25db258a0e3f39f93a0704014
  • Pointer size: 130 Bytes
  • Size of remote file: 47.1 kB
examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9_canny_100_200_512.jpg ADDED

Git LFS Details

  • SHA256: a78563977bc2236d93bff7a2e1459efcb737eabe5e044c70ce627840796106e9
  • Pointer size: 131 Bytes
  • Size of remote file: 184 kB
examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9_depth-anything-v2_Large.jpg ADDED

Git LFS Details

  • SHA256: 944b88ce7c555db6653fab381d475d7af2d5552dd732c9fe3b81c28a9aa6b425
  • Pointer size: 130 Bytes
  • Size of remote file: 80.7 kB
examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9_dsine_normal_map.jpg ADDED

Git LFS Details

  • SHA256: 107b1cfe736e79078760fbbeffa050e82584e4265eb632948107926a2e0b1ed3
  • Pointer size: 131 Bytes
  • Size of remote file: 143 kB
examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9_hed_512.jpg ADDED

Git LFS Details

  • SHA256: 7db142dd0065491bc4c8367cd1b5c7fbaaa754eafed5ab80a9980d43c6c5a326
  • Pointer size: 131 Bytes
  • Size of remote file: 165 kB
examples/examples/012cd3921e1f97d761eeff580f918ff9/012cd3921e1f97d761eeff580f918ff9_sam2_mask.jpg ADDED

Git LFS Details

  • SHA256: c2439f48bf3a32e2e380c6c73016d63660a6a36cc8fbeeb3737c8b92c9ca3a07
  • Pointer size: 131 Bytes
  • Size of remote file: 229 kB
examples/examples/0fdaecdb7906a1bf0d6e202363f15de3/0fdaecdb7906a1bf0d6e202363f15de3.jpg ADDED

Git LFS Details

  • SHA256: 59350c813475dce227e740d946c5b7664c4390c6d26f3261ec0202a2480c5b74
  • Pointer size: 131 Bytes
  • Size of remote file: 243 kB
examples/examples/0fdaecdb7906a1bf0d6e202363f15de3/0fdaecdb7906a1bf0d6e202363f15de3_instantx-style_0.jpg ADDED

Git LFS Details

  • SHA256: 19c642b67133efe536ee9a7cf9016e7f269db2d23c2bea9a077e83460cd7d629
  • Pointer size: 131 Bytes
  • Size of remote file: 249 kB
examples/examples/0fdaecdb7906a1bf0d6e202363f15de3/0fdaecdb7906a1bf0d6e202363f15de3_instantx-style_0_style.jpg ADDED

Git LFS Details

  • SHA256: 0796121fe4d6a689278cf5af4f0428793b38c3ce9d5c39072a45a3c6a0dfe21e
  • Pointer size: 131 Bytes
  • Size of remote file: 342 kB
examples/examples/0fdaecdb7906a1bf0d6e202363f15de3/0fdaecdb7906a1bf0d6e202363f15de3_qwen2_5_mask.jpg ADDED

Git LFS Details

  • SHA256: 85dc6eb30251a4c7bb45d6a8caea4f9d93f40543dfb4ad6d50d647ab49a15bee
  • Pointer size: 130 Bytes
  • Size of remote file: 65.9 kB
examples/examples/10d7dcae5240b8cc8c9427e876b4f462/10d7dcae5240b8cc8c9427e876b4f462.jpg ADDED

Git LFS Details

  • SHA256: 156bcd9d1123e6732829ccca11eda8761191f219de538e5b1746c9d283c47627
  • Pointer size: 131 Bytes
  • Size of remote file: 216 kB
examples/examples/10d7dcae5240b8cc8c9427e876b4f462/10d7dcae5240b8cc8c9427e876b4f462_instantx-style_0.jpg ADDED

Git LFS Details

  • SHA256: 4c9beac8a2d2713b06311394315c006192a1ea35f17ee80e8fc4d6f6a93464b4
  • Pointer size: 131 Bytes
  • Size of remote file: 382 kB
examples/examples/10d7dcae5240b8cc8c9427e876b4f462/10d7dcae5240b8cc8c9427e876b4f462_instantx-style_0_style.jpg ADDED

Git LFS Details

  • SHA256: f91bd76cd88742f32d48f659d7e1890e5f6c7986f542b4a4b5041d9aa4cd6e23
  • Pointer size: 131 Bytes
  • Size of remote file: 458 kB
examples/examples/10d7dcae5240b8cc8c9427e876b4f462/10d7dcae5240b8cc8c9427e876b4f462_qwen2_5_mask.jpg ADDED

Git LFS Details

  • SHA256: 538a5a535aad2befabcdb23914d8e4bf2dd00aedc0ec7f460742ce3a2d3ebb44
  • Pointer size: 130 Bytes
  • Size of remote file: 53 kB
examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3.jpg ADDED

Git LFS Details

  • SHA256: e92c8ccfb16feac9a6ebb408c459cacb1480984b1f2069939834e1e22f342f82
  • Pointer size: 131 Bytes
  • Size of remote file: 224 kB
examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3_canny_100_200_512.jpg ADDED

Git LFS Details

  • SHA256: 680ad5e599de63a1cdcf11fb52c81688c26ee1a49664940388b6526a01bce4ba
  • Pointer size: 131 Bytes
  • Size of remote file: 227 kB
examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3_depth-anything-v2_Large.jpg ADDED

Git LFS Details

  • SHA256: a85966b4f60297e0b4c4cf50d1a5052589f4a56b12683aefaa508101fb0f1b75
  • Pointer size: 130 Bytes
  • Size of remote file: 72.6 kB
examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3_dsine_normal_map.jpg ADDED

Git LFS Details

  • SHA256: 2bcd73f41f18c76353aedea03130566b5fa7e63ac11e429eaa2a1e6469f8192c
  • Pointer size: 131 Bytes
  • Size of remote file: 230 kB
examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3_hed_512.jpg ADDED

Git LFS Details

  • SHA256: ac807b0fa0c1dfd41fc8b4b0a20d5cd74eb414f53020d6471dabb269b6f67303
  • Pointer size: 131 Bytes
  • Size of remote file: 170 kB
examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3_openpose_fullres_nohand.jpg ADDED

Git LFS Details

  • SHA256: 0dd5fa3b2ee1b2d71603a266f3b45b2f9e3bfe2be5ee9279d3ba98d0dc6b8231
  • Pointer size: 131 Bytes
  • Size of remote file: 127 kB
examples/examples/2b74476568f7562a6aa832d423132ed3/2b74476568f7562a6aa832d423132ed3_sam2_mask.jpg ADDED

Git LFS Details

  • SHA256: c2729c28b7c2aad173ec15eb1c6426578aabbe3048f8fff4e7c138ed33c89934
  • Pointer size: 131 Bytes
  • Size of remote file: 209 kB
examples/examples/2c4e256fa512cb7e7f433f4c7f9101de/2c4e256fa512cb7e7f433f4c7f9101de.jpg ADDED

Git LFS Details

  • SHA256: 42873e75c6fdb61555e708ac840b976d3eef4b75459529f122540eae7108112f
  • Pointer size: 131 Bytes
  • Size of remote file: 249 kB
examples/examples/2c4e256fa512cb7e7f433f4c7f9101de/2c4e256fa512cb7e7f433f4c7f9101de_ben2-background-removal.jpg ADDED

Git LFS Details

  • SHA256: b87c1ac807916d1487bb862f15066d209a7500ef24077e11e922d7056f5e8f0b
  • Pointer size: 130 Bytes
  • Size of remote file: 35.1 kB
examples/examples/2c4e256fa512cb7e7f433f4c7f9101de/2c4e256fa512cb7e7f433f4c7f9101de_canny_100_200_512.jpg ADDED

Git LFS Details

  • SHA256: 366435caadac2827ecca13babdf330af9325d17e315afa120237b3c74b7c72e0
  • Pointer size: 131 Bytes
  • Size of remote file: 246 kB