Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,380 Bytes
bce439c 7f98410 0e14842 bce439c 0e14842 bce439c fda85af 0e14842 c86d77c 7f98410 f3cae17 7f98410 0e14842 bce439c 0225ff8 0e14842 bce439c 0e14842 f3cae17 7f98410 f3cae17 7f98410 0e14842 f3cae17 3c47ef3 f3cae17 bce439c 0e14842 fda85af bce439c fda85af bce439c 7f98410 c86d77c 7f98410 0e14842 0225ff8 0e14842 0225ff8 bf65a8f 0e14842 0225ff8 0e14842 d548c69 0225ff8 d548c69 0225ff8 9d997d8 0225ff8 7f98410 0225ff8 7f98410 0225ff8 7f98410 0e14842 bce439c 7f98410 0225ff8 7f98410 0225ff8 7f98410 c86d77c 0225ff8 c86d77c a2bd23b 0225ff8 fda85af 7f98410 0225ff8 7f98410 c86d77c 7f98410 0225ff8 7f98410 bce439c c86d77c 0e14842 bce439c fda85af bce439c 7f98410 ba0cd8f 0e14842 fda85af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import random
import os
import uuid
from datetime import datetime
import gradio as gr
import numpy as np
import spaces
import torch
from diffusers import DiffusionPipeline
from PIL import Image
# Create permanent storage directory
SAVE_DIR = "saved_images" # Gradio will handle the persistence
if not os.path.exists(SAVE_DIR):
os.makedirs(SAVE_DIR, exist_ok=True)
device = "cuda" if torch.cuda.is_available() else "cpu"
repo_id = "black-forest-labs/FLUX.1-dev"
adapter_id = "openfree/pierre-auguste-renoir" # Changed to Renoir model
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
pipeline.load_lora_weights(adapter_id)
pipeline = pipeline.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
def save_generated_image(image, prompt):
# Generate unique filename with timestamp
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
unique_id = str(uuid.uuid4())[:8]
filename = f"{timestamp}_{unique_id}.png"
filepath = os.path.join(SAVE_DIR, filename)
# Save the image
image.save(filepath)
# Save metadata
metadata_file = os.path.join(SAVE_DIR, "metadata.txt")
with open(metadata_file, "a", encoding="utf-8") as f:
f.write(f"{filename}|{prompt}|{timestamp}\n")
return filepath
def load_generated_images():
if not os.path.exists(SAVE_DIR):
return []
# Load all images from the directory
image_files = [os.path.join(SAVE_DIR, f) for f in os.listdir(SAVE_DIR)
if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))]
# Sort by creation time (newest first)
image_files.sort(key=lambda x: os.path.getctime(x), reverse=True)
return image_files
def load_predefined_images():
predefined_images = [
"assets/r1.webp",
"assets/r2.webp",
"assets/r3.webp",
"assets/r4.webp",
"assets/r5.webp",
"assets/r6.webp",
]
return predefined_images
@spaces.GPU(duration=120)
def inference(
prompt: str,
seed: int,
randomize_seed: bool,
width: int,
height: int,
guidance_scale: float,
num_inference_steps: int,
lora_scale: float,
progress: gr.Progress = gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
image = pipeline(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
# Save the generated image
filepath = save_generated_image(image, prompt)
# Return the image, seed, and updated gallery
return image, seed, load_generated_images()
examples = [
"Renoir's painting of a lively outdoor dance scene at Moulin de la Galette, with dappled sunlight filtering through trees, illuminating well-dressed Parisians enjoying a summer afternoon. Couples dance while others socialize at tables, capturing the joie de vivre of 1870s Montmartre. [trigger]",
"Renoir's intimate portrait of a young woman with rosy cheeks and lips, soft blonde hair, and a gentle smile. She wears a vibrant blue dress against a background of lush flowers and greenery, showcasing his mastery of depicting feminine beauty with warm, luminous skin tones. [trigger]",
"Renoir's painting of two young girls seated at a piano, captured in his distinctive soft focus style. The scene shows one girl playing while the other stands beside her, both wearing delicate white dresses. The interior setting features warm colors and loose brushwork typical of his mature period. [trigger]",
"Renoir's painting of an elegant boating party, with fashionably dressed men and women relaxing on a restaurant terrace overlooking the Seine. The scene captures the leisurely atmosphere of 1880s French society, with sparkling water reflections and a bright, airy palette of blues, whites, and warm flesh tones. [trigger]",
"Renoir's painting of a sun-dappled garden scene with children playing. The composition features vibrant flowers in full bloom, lush greenery, and Renoir's characteristic luminous treatment of sunlight filtering through foliage, creating patches of brilliant color across the canvas. [trigger]",
"Renoir's depiction of bathers by a riverbank, with several female figures arranged in a harmonious composition. The painting showcases his later style with fuller figures rendered in pearlescent flesh tones against a backdrop of shimmering water and verdant landscape, demonstrating his unique approach to the nude figure in nature. [trigger]"
]
# Brighter custom CSS with vibrant colors
custom_css = """
:root {
--color-primary: #FF9E6C;
--color-secondary: #FFD8A9;
}
footer {
visibility: hidden;
}
.gradio-container {
background: linear-gradient(to right, #FFF4E0, #FFEDDB);
}
.title {
color: #E25822 !important;
font-size: 2.5rem !important;
font-weight: 700 !important;
text-align: center;
margin: 1rem 0;
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
}
.subtitle {
color: #2B3A67 !important;
font-size: 1.2rem !important;
text-align: center;
margin-bottom: 2rem;
}
.model-description {
background-color: rgba(255, 255, 255, 0.7);
border-radius: 10px;
padding: 20px;
margin: 20px 0;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
border-left: 5px solid #E25822;
}
button.primary {
background-color: #E25822 !important;
}
button:hover {
transform: translateY(-2px);
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
.tabs {
margin-top: 20px;
}
.gallery {
background-color: rgba(255, 255, 255, 0.5);
border-radius: 10px;
padding: 10px;
}
"""
with gr.Blocks(css=custom_css, analytics_enabled=False) as demo:
gr.HTML('<div class="title">Pierre-Auguste Renoir STUDIO</div>')
# Model description with the requested content
with gr.Group(elem_classes="model-description"):
gr.Markdown("""
# About This Model
This studio features the **Pierre-Auguste Renoir** artistic style model from [openfree/pierre-auguste-renoir](https://huggingface.co/openfree/pierre-auguste-renoir).
Pierre-Auguste Renoir (1841-1919) was a leading painter in the development of the Impressionist style. His paintings are notable for their vibrant light and saturated color, focusing on people in intimate and candid compositions. The warmth of his palette often emphasized the sensual beauty of his subjects, particularly women.
I developed a flux-based learning model trained on a curated collection of high-resolution masterpieces from renowned global artists. This LoRA fine-tuning process leveraged the exceptional quality of open-access imagery released by prestigious institutions including the Art Institute of Chicago. The resulting model demonstrates remarkable capability in capturing the nuanced artistic techniques and stylistic elements across diverse historical art movements.
**How to use**: Simply enter a prompt describing a scene in Renoir's style and add [trigger] at the end.
""")
with gr.Tabs(elem_classes="tabs") as tabs:
with gr.Tab("Generation"):
with gr.Column(elem_id="col-container"):
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt (add [trigger] at the end)",
container=False,
)
run_button = gr.Button("Generate", variant="primary", scale=0)
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=768,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=3.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
gr.Examples(
examples=examples,
inputs=[prompt],
outputs=[result, seed],
)
with gr.Tab("Gallery"):
gallery_header = gr.Markdown("### Your Generated Images")
generated_gallery = gr.Gallery(
label="Generated Images",
columns=3,
show_label=False,
value=load_generated_images(),
elem_id="generated_gallery",
elem_classes="gallery",
height="auto"
)
refresh_btn = gr.Button("🔄 Refresh Gallery", variant="primary")
# Add sample gallery section at the bottom
gr.Markdown("### Pierre-Auguste Renoir Style Examples")
predefined_gallery = gr.Gallery(
label="Sample Images",
columns=3,
rows=2,
show_label=False,
value=load_predefined_images(),
elem_classes="gallery"
)
# Event handlers
def refresh_gallery():
return load_generated_images()
refresh_btn.click(
fn=refresh_gallery,
inputs=None,
outputs=generated_gallery,
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=inference,
inputs=[
prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
lora_scale,
],
outputs=[result, seed, generated_gallery],
)
demo.queue()
demo.launch() |