ginipick commited on
Commit
08b28a3
·
verified ·
1 Parent(s): 8336ddb

Create app-backup.py

Browse files
Files changed (1) hide show
  1. app-backup.py +1657 -0
app-backup.py ADDED
@@ -0,0 +1,1657 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers_helper.hf_login import login
2
+
3
+ import os
4
+ import threading
5
+ import time
6
+ import requests
7
+ from requests.adapters import HTTPAdapter
8
+ from urllib3.util.retry import Retry
9
+ import json
10
+
11
+ os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
12
+
13
+ # 添加中英双语翻译字典
14
+ translations = {
15
+ "en": {
16
+ "title": "FramePack - Image to Video Generation",
17
+ "upload_image": "Upload Image",
18
+ "prompt": "Prompt",
19
+ "quick_prompts": "Quick Prompts",
20
+ "start_generation": "Generate",
21
+ "stop_generation": "Stop",
22
+ "use_teacache": "Use TeaCache",
23
+ "teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
24
+ "negative_prompt": "Negative Prompt",
25
+ "seed": "Seed",
26
+ "video_length": "Video Length (max 5 seconds)",
27
+ "latent_window": "Latent Window Size",
28
+ "steps": "Inference Steps",
29
+ "steps_info": "Changing this value is not recommended.",
30
+ "cfg_scale": "CFG Scale",
31
+ "distilled_cfg": "Distilled CFG Scale",
32
+ "distilled_cfg_info": "Changing this value is not recommended.",
33
+ "cfg_rescale": "CFG Rescale",
34
+ "gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
35
+ "gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
36
+ "next_latents": "Next Latents",
37
+ "generated_video": "Generated Video",
38
+ "sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
39
+ "error_message": "Error",
40
+ "processing_error": "Processing error",
41
+ "network_error": "Network connection is unstable, model download timed out. Please try again later.",
42
+ "memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
43
+ "model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
44
+ "partial_video": "Processing error, but partial video has been generated",
45
+ "processing_interrupt": "Processing was interrupted, but partial video has been generated"
46
+ },
47
+ "zh": {
48
+ "title": "FramePack - 图像到视频生成",
49
+ "upload_image": "上传图像",
50
+ "prompt": "提示词",
51
+ "quick_prompts": "快速提示词列表",
52
+ "start_generation": "开始生成",
53
+ "stop_generation": "结束生成",
54
+ "use_teacache": "使用TeaCache",
55
+ "teacache_info": "速度更快,但可能会使手指和手的生成效果稍差。",
56
+ "negative_prompt": "负面提示词",
57
+ "seed": "随机种子",
58
+ "video_length": "视频长度(最大5秒)",
59
+ "latent_window": "潜在窗口大小",
60
+ "steps": "推理步数",
61
+ "steps_info": "不建议修改此值。",
62
+ "cfg_scale": "CFG Scale",
63
+ "distilled_cfg": "蒸馏CFG比例",
64
+ "distilled_cfg_info": "不建议修改此值。",
65
+ "cfg_rescale": "CFG重缩放",
66
+ "gpu_memory": "GPU推理保留内存(GB)(值越大速度越慢)",
67
+ "gpu_memory_info": "如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。",
68
+ "next_latents": "下一批潜变量",
69
+ "generated_video": "生成的视频",
70
+ "sampling_note": "注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。",
71
+ "error_message": "错误信息",
72
+ "processing_error": "处理过程出错",
73
+ "network_error": "网络连接不稳定,模型下载超时。请稍后再试。",
74
+ "memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。",
75
+ "model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。",
76
+ "partial_video": "处理过程中出现错误,但已生成部分视频",
77
+ "processing_interrupt": "处理过程中断,但已生成部分视频"
78
+ }
79
+ }
80
+
81
+ # 语言切换功能
82
+ def get_translation(key, lang="en"):
83
+ if lang in translations and key in translations[lang]:
84
+ return translations[lang][key]
85
+ # 默认返回英文
86
+ return translations["en"].get(key, key)
87
+
88
+ # 默认语言设置
89
+ current_language = "en"
90
+
91
+ # 切换语言函数
92
+ def switch_language():
93
+ global current_language
94
+ current_language = "zh" if current_language == "en" else "en"
95
+ return current_language
96
+
97
+ import gradio as gr
98
+ import torch
99
+ import traceback
100
+ import einops
101
+ import safetensors.torch as sf
102
+ import numpy as np
103
+ import math
104
+
105
+ # 检查是否在Hugging Face Space环境中
106
+ IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
107
+
108
+ # 添加变量跟踪GPU可用性
109
+ GPU_AVAILABLE = False
110
+ GPU_INITIALIZED = False
111
+ last_update_time = time.time()
112
+
113
+ # 如果在Hugging Face Space中,导入spaces模块
114
+ if IN_HF_SPACE:
115
+ try:
116
+ import spaces
117
+ print("在Hugging Face Space环境中运行,已导入spaces模块")
118
+
119
+ # 检查GPU可用性
120
+ try:
121
+ GPU_AVAILABLE = torch.cuda.is_available()
122
+ print(f"GPU available: {GPU_AVAILABLE}")
123
+ if GPU_AVAILABLE:
124
+ print(f"GPU device name: {torch.cuda.get_device_name(0)}")
125
+ print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
126
+
127
+ # 尝试进行小型GPU操作,确认GPU实际可用
128
+ test_tensor = torch.zeros(1, device='cuda')
129
+ test_tensor = test_tensor + 1
130
+ del test_tensor
131
+ print("成功进行GPU测试操作")
132
+ else:
133
+ print("警告: CUDA报告可用,但未检测到GPU设备")
134
+ except Exception as e:
135
+ GPU_AVAILABLE = False
136
+ print(f"检查GPU时出错: {e}")
137
+ print("将使用CPU模式运行")
138
+ except ImportError:
139
+ print("未能导入spaces模块,可能不在Hugging Face Space环境中")
140
+ GPU_AVAILABLE = torch.cuda.is_available()
141
+
142
+ from PIL import Image
143
+ from diffusers import AutoencoderKLHunyuanVideo
144
+ from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
145
+ from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
146
+ from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
147
+ from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
148
+ from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
149
+ from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE
150
+ from diffusers_helper.thread_utils import AsyncStream, async_run
151
+ from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
152
+ from transformers import SiglipImageProcessor, SiglipVisionModel
153
+ from diffusers_helper.clip_vision import hf_clip_vision_encode
154
+ from diffusers_helper.bucket_tools import find_nearest_bucket
155
+
156
+ outputs_folder = './outputs/'
157
+ os.makedirs(outputs_folder, exist_ok=True)
158
+
159
+ # 在Spaces环境中,我们延迟所有CUDA操作
160
+ if not IN_HF_SPACE:
161
+ # 仅在非Spaces环境中获取CUDA内存
162
+ try:
163
+ if torch.cuda.is_available():
164
+ free_mem_gb = get_cuda_free_memory_gb(gpu)
165
+ print(f'Free VRAM {free_mem_gb} GB')
166
+ else:
167
+ free_mem_gb = 6.0 # 默认值
168
+ print("CUDA不可用,使用默认的内存设置")
169
+ except Exception as e:
170
+ free_mem_gb = 6.0 # 默认值
171
+ print(f"获取CUDA内存时出错: {e},使用默认的内存设置")
172
+
173
+ high_vram = free_mem_gb > 60
174
+ print(f'High-VRAM Mode: {high_vram}')
175
+ else:
176
+ # 在Spaces环境中使用默认值
177
+ print("在Spaces环境中使用默认内存设置")
178
+ try:
179
+ if GPU_AVAILABLE:
180
+ free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9 # 使用90%的GPU内存
181
+ high_vram = free_mem_gb > 10 # 更保守的条件
182
+ else:
183
+ free_mem_gb = 6.0 # 默认值
184
+ high_vram = False
185
+ except Exception as e:
186
+ print(f"获取GPU内存时出错: {e}")
187
+ free_mem_gb = 6.0 # 默认值
188
+ high_vram = False
189
+
190
+ print(f'GPU内存: {free_mem_gb:.2f} GB, High-VRAM Mode: {high_vram}')
191
+
192
+ # 使用models变量存储全局模型引用
193
+ models = {}
194
+ cpu_fallback_mode = not GPU_AVAILABLE # 如果GPU不可用,使用CPU回退模式
195
+
196
+ # 使用加载模型的函数
197
+ def load_models():
198
+ global models, cpu_fallback_mode, GPU_INITIALIZED
199
+
200
+ if GPU_INITIALIZED:
201
+ print("模型已加载,跳过重复加载")
202
+ return models
203
+
204
+ print("开始加载模型...")
205
+
206
+ try:
207
+ # 设置设备,根据GPU可用性确定
208
+ device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
209
+ model_device = 'cpu' # 初始加载到CPU
210
+
211
+ # 降低精度以节省内存
212
+ dtype = torch.float16 if GPU_AVAILABLE else torch.float32
213
+ transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
214
+
215
+ print(f"使用设备: {device}, 模型精度: {dtype}, Transformer精度: {transformer_dtype}")
216
+
217
+ # 加载模型
218
+ try:
219
+ text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to(model_device)
220
+ text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to(model_device)
221
+ tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
222
+ tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
223
+ vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to(model_device)
224
+
225
+ feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
226
+ image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to(model_device)
227
+
228
+ transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to(model_device)
229
+
230
+ print("成功加载所有模型")
231
+ except Exception as e:
232
+ print(f"加载模型时出错: {e}")
233
+ print("尝试降低精度重新加载...")
234
+
235
+ # 降低精度重试
236
+ dtype = torch.float32
237
+ transformer_dtype = torch.float32
238
+ cpu_fallback_mode = True
239
+
240
+ text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to('cpu')
241
+ text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to('cpu')
242
+ tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
243
+ tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
244
+ vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to('cpu')
245
+
246
+ feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
247
+ image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to('cpu')
248
+
249
+ transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to('cpu')
250
+
251
+ print("使用CPU模式成功加载所有模型")
252
+
253
+ vae.eval()
254
+ text_encoder.eval()
255
+ text_encoder_2.eval()
256
+ image_encoder.eval()
257
+ transformer.eval()
258
+
259
+ if not high_vram or cpu_fallback_mode:
260
+ vae.enable_slicing()
261
+ vae.enable_tiling()
262
+
263
+ transformer.high_quality_fp32_output_for_inference = True
264
+ print('transformer.high_quality_fp32_output_for_inference = True')
265
+
266
+ # 设置模型精度
267
+ if not cpu_fallback_mode:
268
+ transformer.to(dtype=transformer_dtype)
269
+ vae.to(dtype=dtype)
270
+ image_encoder.to(dtype=dtype)
271
+ text_encoder.to(dtype=dtype)
272
+ text_encoder_2.to(dtype=dtype)
273
+
274
+ vae.requires_grad_(False)
275
+ text_encoder.requires_grad_(False)
276
+ text_encoder_2.requires_grad_(False)
277
+ image_encoder.requires_grad_(False)
278
+ transformer.requires_grad_(False)
279
+
280
+ if torch.cuda.is_available() and not cpu_fallback_mode:
281
+ try:
282
+ if not high_vram:
283
+ # DynamicSwapInstaller is same as huggingface's enable_sequential_offload but 3x faster
284
+ DynamicSwapInstaller.install_model(transformer, device=device)
285
+ DynamicSwapInstaller.install_model(text_encoder, device=device)
286
+ else:
287
+ text_encoder.to(device)
288
+ text_encoder_2.to(device)
289
+ image_encoder.to(device)
290
+ vae.to(device)
291
+ transformer.to(device)
292
+ print(f"成功将模型移动到{device}设备")
293
+ except Exception as e:
294
+ print(f"移动模型到{device}时出错: {e}")
295
+ print("回退到CPU模式")
296
+ cpu_fallback_mode = True
297
+
298
+ # 保存到全局变量
299
+ models = {
300
+ 'text_encoder': text_encoder,
301
+ 'text_encoder_2': text_encoder_2,
302
+ 'tokenizer': tokenizer,
303
+ 'tokenizer_2': tokenizer_2,
304
+ 'vae': vae,
305
+ 'feature_extractor': feature_extractor,
306
+ 'image_encoder': image_encoder,
307
+ 'transformer': transformer
308
+ }
309
+
310
+ GPU_INITIALIZED = True
311
+ print(f"模型加载完成,运行模式: {'CPU' if cpu_fallback_mode else 'GPU'}")
312
+ return models
313
+ except Exception as e:
314
+ print(f"加载模型过程中发生错误: {e}")
315
+ traceback.print_exc()
316
+
317
+ # 记录更详细的错误信息
318
+ error_info = {
319
+ "error": str(e),
320
+ "traceback": traceback.format_exc(),
321
+ "cuda_available": torch.cuda.is_available(),
322
+ "device": "cpu" if cpu_fallback_mode else "cuda",
323
+ }
324
+
325
+ # 保存错误信息到文件,方便排查
326
+ try:
327
+ with open(os.path.join(outputs_folder, "error_log.txt"), "w") as f:
328
+ f.write(str(error_info))
329
+ except:
330
+ pass
331
+
332
+ # 返回空字典,允许应用继续尝试运行
333
+ cpu_fallback_mode = True
334
+ return {}
335
+
336
+
337
+ # 使用Hugging Face Spaces GPU装饰器
338
+ if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
339
+ try:
340
+ @spaces.GPU
341
+ def initialize_models():
342
+ """在@spaces.GPU装饰器内初始化模型"""
343
+ global GPU_INITIALIZED
344
+ try:
345
+ result = load_models()
346
+ GPU_INITIALIZED = True
347
+ return result
348
+ except Exception as e:
349
+ print(f"使用spaces.GPU初始化模型时出错: {e}")
350
+ traceback.print_exc()
351
+ global cpu_fallback_mode
352
+ cpu_fallback_mode = True
353
+ # 不使用装饰器再次尝试
354
+ return load_models()
355
+ except Exception as e:
356
+ print(f"创建spaces.GPU装饰器时出错: {e}")
357
+ # 如果装饰器出错,直接使用非装饰器版本
358
+ def initialize_models():
359
+ return load_models()
360
+
361
+
362
+ # 以下函数内部会延迟获取模型
363
+ def get_models():
364
+ """获取模型,如果尚未加载则加载模型"""
365
+ global models, GPU_INITIALIZED
366
+
367
+ # 添加模型加载锁,防止并发加载
368
+ model_loading_key = "__model_loading__"
369
+
370
+ if not models:
371
+ # 检查是否正在加载模型
372
+ if model_loading_key in globals():
373
+ print("模型正在加载中,等待...")
374
+ # 等待模型加载完成
375
+ import time
376
+ start_wait = time.time()
377
+ while not models and model_loading_key in globals():
378
+ time.sleep(0.5)
379
+ # 超过60秒认为加载失败
380
+ if time.time() - start_wait > 60:
381
+ print("等待模型加载超时")
382
+ break
383
+
384
+ if models:
385
+ return models
386
+
387
+ try:
388
+ # 设置加载标记
389
+ globals()[model_loading_key] = True
390
+
391
+ if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
392
+ try:
393
+ print("使用@spaces.GPU装饰器加载模型")
394
+ models = initialize_models()
395
+ except Exception as e:
396
+ print(f"使用GPU装饰器加载模型失败: {e}")
397
+ print("尝试直接加载模型")
398
+ models = load_models()
399
+ else:
400
+ print("直接加载模型")
401
+ models = load_models()
402
+ except Exception as e:
403
+ print(f"加载模型时发生未预期的错误: {e}")
404
+ traceback.print_exc()
405
+ # 确保有一个空字典
406
+ models = {}
407
+ finally:
408
+ # 无论成功与否,都移除加载标记
409
+ if model_loading_key in globals():
410
+ del globals()[model_loading_key]
411
+
412
+ return models
413
+
414
+
415
+ stream = AsyncStream()
416
+
417
+
418
+ @torch.no_grad()
419
+ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
420
+ global last_update_time
421
+ last_update_time = time.time()
422
+
423
+ # 限制视频长度不超过5秒
424
+ total_second_length = min(total_second_length, 5.0)
425
+
426
+ # 获取模型
427
+ try:
428
+ models = get_models()
429
+ if not models:
430
+ error_msg = "模型加载失败,请检查日志获取详细信息"
431
+ print(error_msg)
432
+ stream.output_queue.push(('error', error_msg))
433
+ stream.output_queue.push(('end', None))
434
+ return
435
+
436
+ text_encoder = models['text_encoder']
437
+ text_encoder_2 = models['text_encoder_2']
438
+ tokenizer = models['tokenizer']
439
+ tokenizer_2 = models['tokenizer_2']
440
+ vae = models['vae']
441
+ feature_extractor = models['feature_extractor']
442
+ image_encoder = models['image_encoder']
443
+ transformer = models['transformer']
444
+ except Exception as e:
445
+ error_msg = f"获取模型时出错: {e}"
446
+ print(error_msg)
447
+ traceback.print_exc()
448
+ stream.output_queue.push(('error', error_msg))
449
+ stream.output_queue.push(('end', None))
450
+ return
451
+
452
+ # 确定设备
453
+ device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
454
+ print(f"使用设备: {device} 进行推理")
455
+
456
+ # 调整参数以适应CPU模式
457
+ if cpu_fallback_mode:
458
+ print("CPU模式下使用更精简的参数")
459
+ # 减小处理大小以加快CPU处理
460
+ latent_window_size = min(latent_window_size, 5)
461
+ steps = min(steps, 15) # 减少步数
462
+ total_second_length = min(total_second_length, 2.0) # CPU模式下进一步限制视频长度
463
+
464
+ total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
465
+ total_latent_sections = int(max(round(total_latent_sections), 1))
466
+
467
+ job_id = generate_timestamp()
468
+ last_output_filename = None
469
+ history_pixels = None
470
+ history_latents = None
471
+ total_generated_latent_frames = 0
472
+
473
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
474
+
475
+ try:
476
+ # Clean GPU
477
+ if not high_vram and not cpu_fallback_mode:
478
+ try:
479
+ unload_complete_models(
480
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
481
+ )
482
+ except Exception as e:
483
+ print(f"卸载模型时出错: {e}")
484
+ # 继续执行,不中断流程
485
+
486
+ # Text encoding
487
+ last_update_time = time.time()
488
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
489
+
490
+ try:
491
+ if not high_vram and not cpu_fallback_mode:
492
+ fake_diffusers_current_device(text_encoder, device)
493
+ load_model_as_complete(text_encoder_2, target_device=device)
494
+
495
+ llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
496
+
497
+ if cfg == 1:
498
+ llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
499
+ else:
500
+ llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
501
+
502
+ llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
503
+ llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
504
+ except Exception as e:
505
+ error_msg = f"文本编码过程出错: {e}"
506
+ print(error_msg)
507
+ traceback.print_exc()
508
+ stream.output_queue.push(('error', error_msg))
509
+ stream.output_queue.push(('end', None))
510
+ return
511
+
512
+ # Processing input image
513
+ last_update_time = time.time()
514
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
515
+
516
+ try:
517
+ H, W, C = input_image.shape
518
+ height, width = find_nearest_bucket(H, W, resolution=640)
519
+
520
+ # 如果是CPU模式,缩小处理尺寸
521
+ if cpu_fallback_mode:
522
+ height = min(height, 320)
523
+ width = min(width, 320)
524
+
525
+ input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
526
+
527
+ Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
528
+
529
+ input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
530
+ input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
531
+ except Exception as e:
532
+ error_msg = f"图像处理过程出错: {e}"
533
+ print(error_msg)
534
+ traceback.print_exc()
535
+ stream.output_queue.push(('error', error_msg))
536
+ stream.output_queue.push(('end', None))
537
+ return
538
+
539
+ # VAE encoding
540
+ last_update_time = time.time()
541
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
542
+
543
+ try:
544
+ if not high_vram and not cpu_fallback_mode:
545
+ load_model_as_complete(vae, target_device=device)
546
+
547
+ start_latent = vae_encode(input_image_pt, vae)
548
+ except Exception as e:
549
+ error_msg = f"VAE编码过程出错: {e}"
550
+ print(error_msg)
551
+ traceback.print_exc()
552
+ stream.output_queue.push(('error', error_msg))
553
+ stream.output_queue.push(('end', None))
554
+ return
555
+
556
+ # CLIP Vision
557
+ last_update_time = time.time()
558
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
559
+
560
+ try:
561
+ if not high_vram and not cpu_fallback_mode:
562
+ load_model_as_complete(image_encoder, target_device=device)
563
+
564
+ image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
565
+ image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
566
+ except Exception as e:
567
+ error_msg = f"CLIP Vision编码过程出错: {e}"
568
+ print(error_msg)
569
+ traceback.print_exc()
570
+ stream.output_queue.push(('error', error_msg))
571
+ stream.output_queue.push(('end', None))
572
+ return
573
+
574
+ # Dtype
575
+ try:
576
+ llama_vec = llama_vec.to(transformer.dtype)
577
+ llama_vec_n = llama_vec_n.to(transformer.dtype)
578
+ clip_l_pooler = clip_l_pooler.to(transformer.dtype)
579
+ clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
580
+ image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
581
+ except Exception as e:
582
+ error_msg = f"数据类型转换出错: {e}"
583
+ print(error_msg)
584
+ traceback.print_exc()
585
+ stream.output_queue.push(('error', error_msg))
586
+ stream.output_queue.push(('end', None))
587
+ return
588
+
589
+ # Sampling
590
+ last_update_time = time.time()
591
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
592
+
593
+ rnd = torch.Generator("cpu").manual_seed(seed)
594
+ num_frames = latent_window_size * 4 - 3
595
+
596
+ try:
597
+ history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
598
+ history_pixels = None
599
+ total_generated_latent_frames = 0
600
+ except Exception as e:
601
+ error_msg = f"初始化历史状态出错: {e}"
602
+ print(error_msg)
603
+ traceback.print_exc()
604
+ stream.output_queue.push(('error', error_msg))
605
+ stream.output_queue.push(('end', None))
606
+ return
607
+
608
+ latent_paddings = reversed(range(total_latent_sections))
609
+
610
+ if total_latent_sections > 4:
611
+ # In theory the latent_paddings should follow the above sequence, but it seems that duplicating some
612
+ # items looks better than expanding it when total_latent_sections > 4
613
+ # One can try to remove below trick and just
614
+ # use `latent_paddings = list(reversed(range(total_latent_sections)))` to compare
615
+ latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
616
+
617
+ for latent_padding in latent_paddings:
618
+ last_update_time = time.time()
619
+ is_last_section = latent_padding == 0
620
+ latent_padding_size = latent_padding * latent_window_size
621
+
622
+ if stream.input_queue.top() == 'end':
623
+ # 确保在结束时保存当前的视频
624
+ if history_pixels is not None and total_generated_latent_frames > 0:
625
+ try:
626
+ output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4')
627
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
628
+ stream.output_queue.push(('file', output_filename))
629
+ except Exception as e:
630
+ print(f"保存最终视频时出错: {e}")
631
+
632
+ stream.output_queue.push(('end', None))
633
+ return
634
+
635
+ print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
636
+
637
+ try:
638
+ indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
639
+ clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
640
+ clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
641
+
642
+ clean_latents_pre = start_latent.to(history_latents)
643
+ clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
644
+ clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
645
+ except Exception as e:
646
+ error_msg = f"准备采样数据时出错: {e}"
647
+ print(error_msg)
648
+ traceback.print_exc()
649
+ # 尝试继续下一轮迭代而不是完全终止
650
+ if last_output_filename:
651
+ stream.output_queue.push(('file', last_output_filename))
652
+ continue
653
+
654
+ if not high_vram and not cpu_fallback_mode:
655
+ try:
656
+ unload_complete_models()
657
+ move_model_to_device_with_memory_preservation(transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation)
658
+ except Exception as e:
659
+ print(f"移动transformer到GPU时出错: {e}")
660
+ # 继续执行,可能影响性能但不必终止
661
+
662
+ if use_teacache and not cpu_fallback_mode:
663
+ try:
664
+ transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
665
+ except Exception as e:
666
+ print(f"初始化teacache时出错: {e}")
667
+ # 禁用teacache并继续
668
+ transformer.initialize_teacache(enable_teacache=False)
669
+ else:
670
+ transformer.initialize_teacache(enable_teacache=False)
671
+
672
+ def callback(d):
673
+ global last_update_time
674
+ last_update_time = time.time()
675
+
676
+ try:
677
+ # 首先检查是否有停止信号
678
+ print(f"【调试】回调函数: 步骤 {d['i']}, 检查是否有停止信号")
679
+ try:
680
+ queue_top = stream.input_queue.top()
681
+ print(f"【调试】回调函数: 队列顶部信号 = {queue_top}")
682
+
683
+ if queue_top == 'end':
684
+ print("【调试】回调函数: 检测到停止信号,准备中断...")
685
+ try:
686
+ stream.output_queue.push(('end', None))
687
+ print("【调试】回调函数: 成功向输出队列推送end信号")
688
+ except Exception as e:
689
+ print(f"【调试】回调函数: 向输出队列推送end信号失败: {e}")
690
+
691
+ print("【调试】回调函数: 即将抛出KeyboardInterrupt异常")
692
+ raise KeyboardInterrupt('用户主动结束任务')
693
+ except Exception as e:
694
+ print(f"【调试】回调函数: 检查队列顶部信号出错: {e}")
695
+
696
+ preview = d['denoised']
697
+ preview = vae_decode_fake(preview)
698
+
699
+ preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
700
+ preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
701
+
702
+ current_step = d['i'] + 1
703
+ percentage = int(100.0 * current_step / steps)
704
+ hint = f'Sampling {current_step}/{steps}'
705
+ desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30). The video is being extended now ...'
706
+ stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
707
+ except KeyboardInterrupt as e:
708
+ # 捕获并重新抛出中断异常,确保它能传播到采样函数
709
+ print(f"【调试】回调函数: 捕获到KeyboardInterrupt: {e}")
710
+ print("【调试】回调函数: 重新抛出中断异常,确保传播到采样函数")
711
+ raise
712
+ except Exception as e:
713
+ print(f"【调试】回调函数中出错: {e}")
714
+ # 不中断采样过程
715
+ print(f"【调试】回调函数: 步骤 {d['i']} 完成")
716
+ return
717
+
718
+ try:
719
+ sampling_start_time = time.time()
720
+ print(f"开始采样,设备: {device}, 数据类型: {transformer.dtype}, 使用TeaCache: {use_teacache and not cpu_fallback_mode}")
721
+
722
+ try:
723
+ print("【调试】开始sample_hunyuan采样流程")
724
+ generated_latents = sample_hunyuan(
725
+ transformer=transformer,
726
+ sampler='unipc',
727
+ width=width,
728
+ height=height,
729
+ frames=num_frames,
730
+ real_guidance_scale=cfg,
731
+ distilled_guidance_scale=gs,
732
+ guidance_rescale=rs,
733
+ # shift=3.0,
734
+ num_inference_steps=steps,
735
+ generator=rnd,
736
+ prompt_embeds=llama_vec,
737
+ prompt_embeds_mask=llama_attention_mask,
738
+ prompt_poolers=clip_l_pooler,
739
+ negative_prompt_embeds=llama_vec_n,
740
+ negative_prompt_embeds_mask=llama_attention_mask_n,
741
+ negative_prompt_poolers=clip_l_pooler_n,
742
+ device=device,
743
+ dtype=transformer.dtype,
744
+ image_embeddings=image_encoder_last_hidden_state,
745
+ latent_indices=latent_indices,
746
+ clean_latents=clean_latents,
747
+ clean_latent_indices=clean_latent_indices,
748
+ clean_latents_2x=clean_latents_2x,
749
+ clean_latent_2x_indices=clean_latent_2x_indices,
750
+ clean_latents_4x=clean_latents_4x,
751
+ clean_latent_4x_indices=clean_latent_4x_indices,
752
+ callback=callback,
753
+ )
754
+
755
+ print(f"【调试】采样完成,用时: {time.time() - sampling_start_time:.2f}秒")
756
+ except KeyboardInterrupt as e:
757
+ # 用户主动中断
758
+ print(f"【调试】捕获到KeyboardInterrupt: {e}")
759
+ print("【调试】用户主动中断采样过程,处理中断逻辑")
760
+
761
+ # 如果已经有生���的视频,返回最后生成的视频
762
+ if last_output_filename:
763
+ print(f"【调试】已有部分生成视频: {last_output_filename},返回此视频")
764
+ stream.output_queue.push(('file', last_output_filename))
765
+ error_msg = "用户中断生成过程,但已生成部分视频"
766
+ else:
767
+ print("【调试】没有部分生成视频,返回中断消息")
768
+ error_msg = "用户中断生成过程,未生成视频"
769
+
770
+ print(f"【调试】推送错误消息: {error_msg}")
771
+ stream.output_queue.push(('error', error_msg))
772
+ print("【调试】推送end信号")
773
+ stream.output_queue.push(('end', None))
774
+ print("【调试】中断处理完成,返回")
775
+ return
776
+ except Exception as e:
777
+ print(f"采样过程中出错: {e}")
778
+ traceback.print_exc()
779
+
780
+ # 如果已经有生成的视频,返回最后生成的视频
781
+ if last_output_filename:
782
+ stream.output_queue.push(('file', last_output_filename))
783
+
784
+ # 创建错误信息
785
+ error_msg = f"采样过程中出错,但已返回部分生成的视频: {e}"
786
+ stream.output_queue.push(('error', error_msg))
787
+ else:
788
+ # 如果没有生成的视频,返回错误信息
789
+ error_msg = f"采样过程中出错,无法生成视频: {e}"
790
+ stream.output_queue.push(('error', error_msg))
791
+
792
+ stream.output_queue.push(('end', None))
793
+ return
794
+
795
+ try:
796
+ if is_last_section:
797
+ generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
798
+
799
+ total_generated_latent_frames += int(generated_latents.shape[2])
800
+ history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
801
+ except Exception as e:
802
+ error_msg = f"处理生成的潜变量时出错: {e}"
803
+ print(error_msg)
804
+ traceback.print_exc()
805
+
806
+ if last_output_filename:
807
+ stream.output_queue.push(('file', last_output_filename))
808
+ stream.output_queue.push(('error', error_msg))
809
+ stream.output_queue.push(('end', None))
810
+ return
811
+
812
+ if not high_vram and not cpu_fallback_mode:
813
+ try:
814
+ offload_model_from_device_for_memory_preservation(transformer, target_device=device, preserved_memory_gb=8)
815
+ load_model_as_complete(vae, target_device=device)
816
+ except Exception as e:
817
+ print(f"管理模型内存时出错: {e}")
818
+ # 继续执行
819
+
820
+ try:
821
+ real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
822
+ except Exception as e:
823
+ error_msg = f"处理历史潜变量时出错: {e}"
824
+ print(error_msg)
825
+
826
+ if last_output_filename:
827
+ stream.output_queue.push(('file', last_output_filename))
828
+ continue
829
+
830
+ try:
831
+ vae_start_time = time.time()
832
+ print(f"开始VAE解码,潜变量形状: {real_history_latents.shape}")
833
+
834
+ if history_pixels is None:
835
+ history_pixels = vae_decode(real_history_latents, vae).cpu()
836
+ else:
837
+ section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
838
+ overlapped_frames = latent_window_size * 4 - 3
839
+
840
+ current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
841
+ history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
842
+
843
+ print(f"VAE解码完成,用时: {time.time() - vae_start_time:.2f}秒")
844
+
845
+ if not high_vram and not cpu_fallback_mode:
846
+ try:
847
+ unload_complete_models()
848
+ except Exception as e:
849
+ print(f"卸载模型时出错: {e}")
850
+
851
+ output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
852
+
853
+ save_start_time = time.time()
854
+ save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
855
+ print(f"保存视频完成,用时: {time.time() - save_start_time:.2f}秒")
856
+
857
+ print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
858
+
859
+ last_output_filename = output_filename
860
+ stream.output_queue.push(('file', output_filename))
861
+ except Exception as e:
862
+ print(f"视频解码或保存过程中出错: {e}")
863
+ traceback.print_exc()
864
+
865
+ # 如果已经有生成的视频,返回最后生成的视频
866
+ if last_output_filename:
867
+ stream.output_queue.push(('file', last_output_filename))
868
+
869
+ # 记录错误信息
870
+ error_msg = f"视频解码或保存过程中出错: {e}"
871
+ stream.output_queue.push(('error', error_msg))
872
+
873
+ # 尝试继续下一次迭代
874
+ continue
875
+
876
+ if is_last_section:
877
+ break
878
+ except Exception as e:
879
+ print(f"【调试】处理过程中出现错误: {e}, 类型: {type(e)}")
880
+ print(f"【调试】错误详情:")
881
+ traceback.print_exc()
882
+
883
+ # 检查是否是中断类型异常
884
+ if isinstance(e, KeyboardInterrupt):
885
+ print("【调试】捕获到外层KeyboardInterrupt异常")
886
+
887
+ if not high_vram and not cpu_fallback_mode:
888
+ try:
889
+ print("【调试】尝试卸载模型以释放资源")
890
+ unload_complete_models(
891
+ text_encoder, text_encoder_2, image_encoder, vae, transformer
892
+ )
893
+ print("【调试】模型卸载成功")
894
+ except Exception as unload_error:
895
+ print(f"【调试】卸载模型时出错: {unload_error}")
896
+ pass
897
+
898
+ # 如果已经有生成的视频,返回最后生成的视频
899
+ if last_output_filename:
900
+ print(f"【调试】外层异常处理: 返回已生成的部分视频 {last_output_filename}")
901
+ stream.output_queue.push(('file', last_output_filename))
902
+ else:
903
+ print("【调试】外层异常处理: 未找到已生成的视频")
904
+
905
+ # 返回错误信息
906
+ error_msg = f"处理过程中出现错误: {e}"
907
+ print(f"【调试】外层异常处理: 推送错误信息: {error_msg}")
908
+ stream.output_queue.push(('error', error_msg))
909
+
910
+ # 确保总是返回end信号
911
+ print("【调试】工作函数结束,推送end信号")
912
+ stream.output_queue.push(('end', None))
913
+ return
914
+
915
+
916
+ # 使用Hugging Face Spaces GPU装饰器处理进程函数
917
+ if IN_HF_SPACE and 'spaces' in globals():
918
+ @spaces.GPU
919
+ def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
920
+ global stream
921
+ assert input_image is not None, 'No input image!'
922
+
923
+ # 初始化UI状态
924
+ yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
925
+
926
+ try:
927
+ stream = AsyncStream()
928
+
929
+ # 异步启动worker
930
+ async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
931
+
932
+ output_filename = None
933
+ prev_output_filename = None
934
+ error_message = None
935
+
936
+ # 持续检查worker的输出
937
+ while True:
938
+ try:
939
+ flag, data = stream.output_queue.next()
940
+
941
+ if flag == 'file':
942
+ output_filename = data
943
+ prev_output_filename = output_filename
944
+ # 清除错误显示,确保文件成功时不显示错误
945
+ yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
946
+
947
+ if flag == 'progress':
948
+ preview, desc, html = data
949
+ # 更新进度时不改变错误信息,并确保停止按钮可交互
950
+ yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
951
+
952
+ if flag == 'error':
953
+ error_message = data
954
+ print(f"收到错误消息: {error_message}")
955
+ # 不立即显示,等待end信号
956
+
957
+ if flag == 'end':
958
+ # 如果有最后的视频文件,确保返回
959
+ if output_filename is None and prev_output_filename is not None:
960
+ output_filename = prev_output_filename
961
+
962
+ # 如果有错误消息,创建友好的错误显示
963
+ if error_message:
964
+ error_html = create_error_html(error_message)
965
+ yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
966
+ else:
967
+ # 确保成功完成时不显示任何错误
968
+ yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
969
+ break
970
+ except Exception as e:
971
+ print(f"处理输出时出错: {e}")
972
+ # 检查是否长时间没有更新
973
+ current_time = time.time()
974
+ if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了
975
+ print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更新")
976
+
977
+ # 如果有部分生成的视频,返回
978
+ if prev_output_filename:
979
+ error_html = create_error_html("处理超时,但已生成部分视频", is_timeout=True)
980
+ yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
981
+ else:
982
+ error_html = create_error_html(f"处理超时: {e}", is_timeout=True)
983
+ yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
984
+ break
985
+
986
+ except Exception as e:
987
+ print(f"启动处理时出错: {e}")
988
+ traceback.print_exc()
989
+ error_msg = str(e)
990
+
991
+ error_html = create_error_html(error_msg)
992
+ yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
993
+
994
+ process = process_with_gpu
995
+ else:
996
+ def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
997
+ global stream
998
+ assert input_image is not None, 'No input image!'
999
+
1000
+ # 初始化UI状态
1001
+ yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
1002
+
1003
+ try:
1004
+ stream = AsyncStream()
1005
+
1006
+ # 异步启动worker
1007
+ async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
1008
+
1009
+ output_filename = None
1010
+ prev_output_filename = None
1011
+ error_message = None
1012
+
1013
+ # 持续检查worker的输出
1014
+ while True:
1015
+ try:
1016
+ flag, data = stream.output_queue.next()
1017
+
1018
+ if flag == 'file':
1019
+ output_filename = data
1020
+ prev_output_filename = output_filename
1021
+ # 清除错误显示,确保文件成功时不显示错误
1022
+ yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
1023
+
1024
+ if flag == 'progress':
1025
+ preview, desc, html = data
1026
+ # 更新进度时不改变错误信息,并确保停止按钮可交互
1027
+ yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
1028
+
1029
+ if flag == 'error':
1030
+ error_message = data
1031
+ print(f"收到错误消息: {error_message}")
1032
+ # 不立即显示,等待end信号
1033
+
1034
+ if flag == 'end':
1035
+ # 如果有最后的视频文件,确保返回
1036
+ if output_filename is None and prev_output_filename is not None:
1037
+ output_filename = prev_output_filename
1038
+
1039
+ # 如果有错误消息,创建友好的错误显示
1040
+ if error_message:
1041
+ error_html = create_error_html(error_message)
1042
+ yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
1043
+ else:
1044
+ # 确保成功完成时不显示任何错误
1045
+ yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
1046
+ break
1047
+ except Exception as e:
1048
+ print(f"处理输出时出错: {e}")
1049
+ # 检查是否长时间没有更新
1050
+ current_time = time.time()
1051
+ if current_time - last_update_time > 60: # 60秒没有更新,可能卡住了
1052
+ print(f"处理似乎卡住了,已经 {current_time - last_update_time:.1f} 秒没有更新")
1053
+
1054
+ # 如果有部分生成的视频,返回
1055
+ if prev_output_filename:
1056
+ error_html = create_error_html("处理超时,但已生成部分视频", is_timeout=True)
1057
+ yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
1058
+ else:
1059
+ error_html = create_error_html(f"处理超时: {e}", is_timeout=True)
1060
+ yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
1061
+ break
1062
+
1063
+ except Exception as e:
1064
+ print(f"启动处理时出错: {e}")
1065
+ traceback.print_exc()
1066
+ error_msg = str(e)
1067
+
1068
+ error_html = create_error_html(error_msg)
1069
+ yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
1070
+
1071
+
1072
+ def end_process():
1073
+ """停止生成过程函数 - 通过在队列中推送'end'信号来中断生成"""
1074
+ print("【调试】用户点击了停止按钮,发送停止信号...")
1075
+ # 确保stream已初始化
1076
+ if 'stream' in globals() and stream is not None:
1077
+ # 在推送前检查队列状态
1078
+ try:
1079
+ current_top = stream.input_queue.top()
1080
+ print(f"【调试】当前队列顶部信号: {current_top}")
1081
+ except Exception as e:
1082
+ print(f"【调试】检查队列状态出错: {e}")
1083
+
1084
+ # 推送end信号
1085
+ try:
1086
+ stream.input_queue.push('end')
1087
+ print("【调试】成功推送end信号到队列")
1088
+
1089
+ # 验证信号是否成功推送
1090
+ try:
1091
+ current_top_after = stream.input_queue.top()
1092
+ print(f"【调试】推送后队列顶部信号: {current_top_after}")
1093
+ except Exception as e:
1094
+ print(f"【调试】验证推送后队列状态出错: {e}")
1095
+
1096
+ except Exception as e:
1097
+ print(f"【调试】推送end信号到队列失败: {e}")
1098
+ else:
1099
+ print("【调试】警告: stream未初始化,无法发送停止信号")
1100
+ return None
1101
+
1102
+
1103
+ quick_prompts = [
1104
+ 'The girl dances gracefully, with clear movements, full of charm.',
1105
+ 'A character doing some simple body movements.',
1106
+ ]
1107
+ quick_prompts = [[x] for x in quick_prompts]
1108
+
1109
+
1110
+ # 创建一个自定义CSS,增加响应式布局支持
1111
+ def make_custom_css():
1112
+ progress_bar_css = make_progress_bar_css()
1113
+
1114
+ responsive_css = """
1115
+ /* 基础响应式设置 */
1116
+ #app-container {
1117
+ max-width: 100%;
1118
+ margin: 0 auto;
1119
+ }
1120
+
1121
+ /* 语言切换按钮样式 */
1122
+ #language-toggle {
1123
+ position: fixed;
1124
+ top: 10px;
1125
+ right: 10px;
1126
+ z-index: 1000;
1127
+ background-color: rgba(0, 0, 0, 0.7);
1128
+ color: white;
1129
+ border: none;
1130
+ border-radius: 4px;
1131
+ padding: 5px 10px;
1132
+ cursor: pointer;
1133
+ font-size: 14px;
1134
+ }
1135
+
1136
+ /* 页面标题样式 */
1137
+ h1 {
1138
+ font-size: 2rem;
1139
+ text-align: center;
1140
+ margin-bottom: 1rem;
1141
+ }
1142
+
1143
+ /* 按钮样式 */
1144
+ .start-btn, .stop-btn {
1145
+ min-height: 45px;
1146
+ font-size: 1rem;
1147
+ }
1148
+
1149
+ /* 移动设备样式 - 小屏幕 */
1150
+ @media (max-width: 768px) {
1151
+ h1 {
1152
+ font-size: 1.5rem;
1153
+ margin-bottom: 0.5rem;
1154
+ }
1155
+
1156
+ /* 单列布局 */
1157
+ .mobile-full-width {
1158
+ flex-direction: column !important;
1159
+ }
1160
+
1161
+ .mobile-full-width > .gr-block {
1162
+ min-width: 100% !important;
1163
+ flex-grow: 1;
1164
+ }
1165
+
1166
+ /* 调整视频大小 */
1167
+ .video-container {
1168
+ height: auto !important;
1169
+ }
1170
+
1171
+ /* 调整按钮大小 */
1172
+ .button-container button {
1173
+ min-height: 50px;
1174
+ font-size: 1rem;
1175
+ touch-action: manipulation;
1176
+ }
1177
+
1178
+ /* 调整滑块 */
1179
+ .slider-container input[type="range"] {
1180
+ height: 30px;
1181
+ }
1182
+ }
1183
+
1184
+ /* 平板设备样式 */
1185
+ @media (min-width: 769px) and (max-width: 1024px) {
1186
+ .tablet-adjust {
1187
+ width: 48% !important;
1188
+ }
1189
+ }
1190
+
1191
+ /* 黑暗模式支持 */
1192
+ @media (prefers-color-scheme: dark) {
1193
+ .dark-mode-text {
1194
+ color: #f0f0f0;
1195
+ }
1196
+
1197
+ .dark-mode-bg {
1198
+ background-color: #2a2a2a;
1199
+ }
1200
+ }
1201
+
1202
+ /* 增强可访问性 */
1203
+ button, input, select, textarea {
1204
+ font-size: 16px; /* 防止iOS缩放 */
1205
+ }
1206
+
1207
+ /* 触摸优化 */
1208
+ button, .interactive-element {
1209
+ min-height: 44px;
1210
+ min-width: 44px;
1211
+ }
1212
+
1213
+ /* 提高对比度 */
1214
+ .high-contrast {
1215
+ color: #fff;
1216
+ background-color: #000;
1217
+ }
1218
+
1219
+ /* 进度条样式增强 */
1220
+ .progress-container {
1221
+ margin-top: 10px;
1222
+ margin-bottom: 10px;
1223
+ }
1224
+
1225
+ /* 错误消息样式 */
1226
+ #error-message {
1227
+ color: #ff4444;
1228
+ font-weight: bold;
1229
+ padding: 10px;
1230
+ border-radius: 4px;
1231
+ margin-top: 10px;
1232
+ }
1233
+
1234
+ /* 确保错误容器正确显示 */
1235
+ .error-message {
1236
+ background-color: rgba(255, 0, 0, 0.1);
1237
+ padding: 10px;
1238
+ border-radius: 4px;
1239
+ margin-top: 10px;
1240
+ border: 1px solid #ffcccc;
1241
+ }
1242
+
1243
+ /* 处理多语言错误消息 */
1244
+ .error-msg-en, .error-msg-zh {
1245
+ font-weight: bold;
1246
+ }
1247
+
1248
+ /* 错误图标 */
1249
+ .error-icon {
1250
+ color: #ff4444;
1251
+ font-size: 18px;
1252
+ margin-right: 8px;
1253
+ }
1254
+
1255
+ /* 确保空错误消息不显示背景和边框 */
1256
+ #error-message:empty {
1257
+ background-color: transparent;
1258
+ border: none;
1259
+ padding: 0;
1260
+ margin: 0;
1261
+ }
1262
+
1263
+ /* 修复Gradio默认错误显示 */
1264
+ .error {
1265
+ display: none !important;
1266
+ }
1267
+ """
1268
+
1269
+ # 合并CSS
1270
+ combined_css = progress_bar_css + responsive_css
1271
+ return combined_css
1272
+
1273
+
1274
+ css = make_custom_css()
1275
+ block = gr.Blocks(css=css).queue()
1276
+ with block:
1277
+ # 添加语言切换功能
1278
+ gr.HTML("""
1279
+ <div id="app-container">
1280
+ <button id="language-toggle" onclick="toggleLanguage()">中文/English</button>
1281
+ </div>
1282
+ <script>
1283
+ // 全局变量,存储当前语言
1284
+ window.currentLang = "en";
1285
+
1286
+ // 语言切换函数
1287
+ function toggleLanguage() {
1288
+ window.currentLang = window.currentLang === "en" ? "zh" : "en";
1289
+
1290
+ // 获取所有带有data-i18n属性的元素
1291
+ const elements = document.querySelectorAll('[data-i18n]');
1292
+
1293
+ // 遍历并切换语言
1294
+ elements.forEach(el => {
1295
+ const key = el.getAttribute('data-i18n');
1296
+ const translations = {
1297
+ "en": {
1298
+ "title": "FramePack - Image to Video Generation",
1299
+ "upload_image": "Upload Image",
1300
+ "prompt": "Prompt",
1301
+ "quick_prompts": "Quick Prompts",
1302
+ "start_generation": "Generate",
1303
+ "stop_generation": "Stop",
1304
+ "use_teacache": "Use TeaCache",
1305
+ "teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
1306
+ "negative_prompt": "Negative Prompt",
1307
+ "seed": "Seed",
1308
+ "video_length": "Video Length (max 5 seconds)",
1309
+ "latent_window": "Latent Window Size",
1310
+ "steps": "Inference Steps",
1311
+ "steps_info": "Changing this value is not recommended.",
1312
+ "cfg_scale": "CFG Scale",
1313
+ "distilled_cfg": "Distilled CFG Scale",
1314
+ "distilled_cfg_info": "Changing this value is not recommended.",
1315
+ "cfg_rescale": "CFG Rescale",
1316
+ "gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
1317
+ "gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
1318
+ "next_latents": "Next Latents",
1319
+ "generated_video": "Generated Video",
1320
+ "sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
1321
+ "error_message": "Error",
1322
+ "processing_error": "Processing error",
1323
+ "network_error": "Network connection is unstable, model download timed out. Please try again later.",
1324
+ "memory_error": "GPU memory insufficient, please try increasing GPU memory preservation value or reduce video length.",
1325
+ "model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
1326
+ "partial_video": "Processing error, but partial video has been generated",
1327
+ "processing_interrupt": "Processing was interrupted, but partial video has been generated"
1328
+ },
1329
+ "zh": {
1330
+ "title": "FramePack - 图像到视频生成",
1331
+ "upload_image": "上传图像",
1332
+ "prompt": "提示词",
1333
+ "quick_prompts": "快速提示词列表",
1334
+ "start_generation": "开始生成",
1335
+ "stop_generation": "结束生成",
1336
+ "use_teacache": "使用TeaCache",
1337
+ "teacache_info": "速度更快,但可能会使手指和手的生成效果稍差。",
1338
+ "negative_prompt": "负面提示词",
1339
+ "seed": "随机种子",
1340
+ "video_length": "视频长度(最大5秒)",
1341
+ "latent_window": "潜在窗口大小",
1342
+ "steps": "推理步数",
1343
+ "steps_info": "不建议修改此值。",
1344
+ "cfg_scale": "CFG Scale",
1345
+ "distilled_cfg": "蒸馏CFG比例",
1346
+ "distilled_cfg_info": "不建议修改此值。",
1347
+ "cfg_rescale": "CFG重缩放",
1348
+ "gpu_memory": "GPU推理保留内存(GB)(值越大速度越慢)",
1349
+ "gpu_memory_info": "如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。",
1350
+ "next_latents": "下一批潜变量",
1351
+ "generated_video": "生成的视频",
1352
+ "sampling_note": "注意:由于采样是倒序的,结束动作将在开始动作之前生成。如果视频中没有出现起始动作,请继续等待,它将在稍后生成。",
1353
+ "error_message": "错误信息",
1354
+ "processing_error": "处理过程出错",
1355
+ "network_error": "网络连接不稳定,模型下载超时。请稍后再试。",
1356
+ "memory_error": "GPU内存不足,请尝试增加GPU推理保留内存值或降低视频长度。",
1357
+ "model_error": "模型加载失败,可能是网络问题或服务器负载过高。请稍后再试。",
1358
+ "partial_video": "处理过程中出现错误,但已生成部分视频",
1359
+ "processing_interrupt": "处理过程中断,但已生成部分视频"
1360
+ }
1361
+ };
1362
+
1363
+ if (translations[window.currentLang] && translations[window.currentLang][key]) {
1364
+ // 根据元素类型设置文本
1365
+ if (el.tagName === 'BUTTON') {
1366
+ el.textContent = translations[window.currentLang][key];
1367
+ } else if (el.tagName === 'LABEL') {
1368
+ el.textContent = translations[window.currentLang][key];
1369
+ } else {
1370
+ el.innerHTML = translations[window.currentLang][key];
1371
+ }
1372
+ }
1373
+ });
1374
+
1375
+ // 更新页面上其他元素
1376
+ document.querySelectorAll('.bilingual-label').forEach(el => {
1377
+ const enText = el.getAttribute('data-en');
1378
+ const zhText = el.getAttribute('data-zh');
1379
+ el.textContent = window.currentLang === 'en' ? enText : zhText;
1380
+ });
1381
+
1382
+ // 处理错误消息容器
1383
+ document.querySelectorAll('[data-lang]').forEach(el => {
1384
+ el.style.display = el.getAttribute('data-lang') === window.currentLang ? 'block' : 'none';
1385
+ });
1386
+ }
1387
+
1388
+ // 页面加载后初始化
1389
+ document.addEventListener('DOMContentLoaded', function() {
1390
+ // 添加data-i18n属性到需要国际化的元素
1391
+ setTimeout(() => {
1392
+ // 给所有标签添加i18n属性
1393
+ const labelMap = {
1394
+ "Upload Image": "upload_image",
1395
+ "上传图像": "upload_image",
1396
+ "Prompt": "prompt",
1397
+ "提示词": "prompt",
1398
+ "Quick Prompts": "quick_prompts",
1399
+ "快速提示词列表": "quick_prompts",
1400
+ "Generate": "start_generation",
1401
+ "开始生成": "start_generation",
1402
+ "Stop": "stop_generation",
1403
+ "结束生成": "stop_generation",
1404
+ // 添加其他标签映射...
1405
+ };
1406
+
1407
+ // 处理标签
1408
+ document.querySelectorAll('label, span, button').forEach(el => {
1409
+ const text = el.textContent.trim();
1410
+ if (labelMap[text]) {
1411
+ el.setAttribute('data-i18n', labelMap[text]);
1412
+ }
1413
+ });
1414
+
1415
+ // 添加特定元素的i18n属性
1416
+ const titleEl = document.querySelector('h1');
1417
+ if (titleEl) titleEl.setAttribute('data-i18n', 'title');
1418
+
1419
+ // 初始化标签语言
1420
+ toggleLanguage();
1421
+ }, 1000);
1422
+ });
1423
+ </script>
1424
+ """)
1425
+
1426
+ # 标题使用data-i18n属性以便JavaScript切换
1427
+ gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation / 图像到视频生成</h1>")
1428
+
1429
+ # 使用带有mobile-full-width类的响应式行
1430
+ with gr.Row(elem_classes="mobile-full-width"):
1431
+ with gr.Column(scale=1, elem_classes="mobile-full-width"):
1432
+ # 添加双语标签 - 上传图像
1433
+ input_image = gr.Image(
1434
+ sources='upload',
1435
+ type="numpy",
1436
+ label="Upload Image / 上传图像",
1437
+ elem_id="input-image",
1438
+ height=320
1439
+ )
1440
+
1441
+ # 添加双语标签 - 提示词
1442
+ prompt = gr.Textbox(
1443
+ label="Prompt / 提示词",
1444
+ value='',
1445
+ elem_id="prompt-input"
1446
+ )
1447
+
1448
+ # 添加双语标签 - 快速提示词
1449
+ example_quick_prompts = gr.Dataset(
1450
+ samples=quick_prompts,
1451
+ label='Quick Prompts / 快速提示词列表',
1452
+ samples_per_page=1000,
1453
+ components=[prompt]
1454
+ )
1455
+ example_quick_prompts.click(lambda x: x[0], inputs=[example_quick_prompts], outputs=prompt, show_progress=False, queue=False)
1456
+
1457
+ # 按钮添加样式和双语标签
1458
+ with gr.Row(elem_classes="button-container"):
1459
+ start_button = gr.Button(
1460
+ value="Generate / 开始生成",
1461
+ elem_classes="start-btn",
1462
+ elem_id="start-button",
1463
+ variant="primary"
1464
+ )
1465
+
1466
+ end_button = gr.Button(
1467
+ value="Stop / 结束生成",
1468
+ elem_classes="stop-btn",
1469
+ elem_id="stop-button",
1470
+ interactive=False
1471
+ )
1472
+
1473
+ # 参数设置区域
1474
+ with gr.Group():
1475
+ use_teacache = gr.Checkbox(
1476
+ label='Use TeaCache / 使用TeaCache',
1477
+ value=True,
1478
+ info='Faster speed, but may result in slightly worse finger and hand generation. / 速度更快,但可能会使手指和手的生成效果稍差。'
1479
+ )
1480
+
1481
+ n_prompt = gr.Textbox(label="Negative Prompt / 负面提示词", value="", visible=False) # Not used
1482
+
1483
+ seed = gr.Number(
1484
+ label="Seed / 随机种子",
1485
+ value=31337,
1486
+ precision=0
1487
+ )
1488
+
1489
+ # 添加slider-container类以便CSS触摸优化
1490
+ with gr.Group(elem_classes="slider-container"):
1491
+ total_second_length = gr.Slider(
1492
+ label="Video Length (max 5 seconds) / 视频长度(最大5秒)",
1493
+ minimum=1,
1494
+ maximum=5,
1495
+ value=5,
1496
+ step=0.1
1497
+ )
1498
+
1499
+ latent_window_size = gr.Slider(
1500
+ label="Latent Window Size / 潜在窗口大小",
1501
+ minimum=1,
1502
+ maximum=33,
1503
+ value=9,
1504
+ step=1,
1505
+ visible=False
1506
+ )
1507
+
1508
+ steps = gr.Slider(
1509
+ label="Inference Steps / 推理步数",
1510
+ minimum=1,
1511
+ maximum=100,
1512
+ value=25,
1513
+ step=1,
1514
+ info='Changing this value is not recommended. / 不建议修改此值。'
1515
+ )
1516
+
1517
+ cfg = gr.Slider(
1518
+ label="CFG Scale",
1519
+ minimum=1.0,
1520
+ maximum=32.0,
1521
+ value=1.0,
1522
+ step=0.01,
1523
+ visible=False
1524
+ )
1525
+
1526
+ gs = gr.Slider(
1527
+ label="Distilled CFG Scale / 蒸馏CFG比例",
1528
+ minimum=1.0,
1529
+ maximum=32.0,
1530
+ value=10.0,
1531
+ step=0.01,
1532
+ info='Changing this value is not recommended. / 不建议修改此值。'
1533
+ )
1534
+
1535
+ rs = gr.Slider(
1536
+ label="CFG Rescale / CFG重缩放",
1537
+ minimum=0.0,
1538
+ maximum=1.0,
1539
+ value=0.0,
1540
+ step=0.01,
1541
+ visible=False
1542
+ )
1543
+
1544
+ gpu_memory_preservation = gr.Slider(
1545
+ label="GPU Memory (GB) / GPU推理保留内存(GB)",
1546
+ minimum=6,
1547
+ maximum=128,
1548
+ value=6,
1549
+ step=0.1,
1550
+ info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed. / 如果出现OOM错误,请将此值设置得更大。值越大,速度越慢。"
1551
+ )
1552
+
1553
+ # 右侧预览和结果列
1554
+ with gr.Column(scale=1, elem_classes="mobile-full-width"):
1555
+ # 预览图像
1556
+ preview_image = gr.Image(
1557
+ label="Preview / 预览",
1558
+ height=200,
1559
+ visible=False,
1560
+ elem_classes="preview-container"
1561
+ )
1562
+
1563
+ # 视频结果容器
1564
+ result_video = gr.Video(
1565
+ label="Generated Video / 生成的视频",
1566
+ autoplay=True,
1567
+ show_share_button=True, # 添加分享按钮
1568
+ height=512,
1569
+ loop=True,
1570
+ elem_classes="video-container",
1571
+ elem_id="result-video"
1572
+ )
1573
+
1574
+ # 双语说明
1575
+ gr.HTML("<div data-i18n='sampling_note' class='note'>Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.</div>")
1576
+
1577
+ # 进度指示器
1578
+ with gr.Group(elem_classes="progress-container"):
1579
+ progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
1580
+ progress_bar = gr.HTML('', elem_classes='no-generating-animation')
1581
+
1582
+ # 错误信息区域 - 确保使用HTML组件以支持我们的自定义错误消息格式
1583
+ error_message = gr.HTML('', elem_id='error-message', visible=True)
1584
+
1585
+ # 处理函数
1586
+ ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
1587
+
1588
+ # 开始和结束按钮事件
1589
+ start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
1590
+ end_button.click(fn=end_process)
1591
+
1592
+
1593
+ block.launch()
1594
+
1595
+ # 创建友好的错误显示HTML
1596
+ def create_error_html(error_msg, is_timeout=False):
1597
+ """创建双语错误消息HTML"""
1598
+ # 提供更友好的中英文双语错误信息
1599
+ en_msg = ""
1600
+ zh_msg = ""
1601
+
1602
+ if is_timeout:
1603
+ en_msg = "Processing timed out, but partial video may have been generated" if "部分视频" in error_msg else f"Processing timed out: {error_msg}"
1604
+ zh_msg = "处理超时,但已生成部分视频" if "部分视频" in error_msg else f"处理超时: {error_msg}"
1605
+ elif "模型加载失败" in error_msg:
1606
+ en_msg = "Failed to load models. The Space may be experiencing high traffic or GPU issues."
1607
+ zh_msg = "模型加载失败,可能是Space流量过高或GPU资源不足。"
1608
+ elif "GPU" in error_msg or "CUDA" in error_msg or "内存" in error_msg or "memory" in error_msg:
1609
+ en_msg = "GPU memory insufficient or GPU error. Try increasing GPU memory preservation value or reduce video length."
1610
+ zh_msg = "GPU内存不足或GPU错误,请尝试增加GPU推理保留内存值或降低视频长度。"
1611
+ elif "采样过程中出错" in error_msg:
1612
+ if "部分" in error_msg:
1613
+ en_msg = "Error during sampling process, but partial video has been generated."
1614
+ zh_msg = "采样过程中出错,但已生成部分视频。"
1615
+ else:
1616
+ en_msg = "Error during sampling process. Unable to generate video."
1617
+ zh_msg = "采样过程中出错,无法生成视频。"
1618
+ elif "模型下载超时" in error_msg or "网络连接不稳定" in error_msg or "ReadTimeoutError" in error_msg or "ConnectionError" in error_msg:
1619
+ en_msg = "Network connection is unstable, model download timed out. Please try again later."
1620
+ zh_msg = "网络连接不稳定,模型下载超时。请稍后再试。"
1621
+ elif "VAE" in error_msg or "解码" in error_msg or "decode" in error_msg:
1622
+ en_msg = "Error during video decoding or saving process. Try again with a different seed."
1623
+ zh_msg = "视频解码或保存过程中出错,请尝试使用不同的随机种子。"
1624
+ else:
1625
+ en_msg = f"Processing error: {error_msg}"
1626
+ zh_msg = f"处理过程出错: {error_msg}"
1627
+
1628
+ # 创建双语错误消息HTML - 添加有用的图标并确保CSS样式适用
1629
+ return f"""
1630
+ <div class="error-message" id="custom-error-container">
1631
+ <div class="error-msg-en" data-lang="en">
1632
+ <span class="error-icon">⚠️</span> {en_msg}
1633
+ </div>
1634
+ <div class="error-msg-zh" data-lang="zh">
1635
+ <span class="error-icon">⚠️</span> {zh_msg}
1636
+ </div>
1637
+ </div>
1638
+ <script>
1639
+ // 根据当前语言显示相应的错误消息
1640
+ (function() {{
1641
+ const errorContainer = document.getElementById('custom-error-container');
1642
+ if (errorContainer) {{
1643
+ const currentLang = window.currentLang || 'en'; // 默认英语
1644
+ const errMsgs = errorContainer.querySelectorAll('[data-lang]');
1645
+ errMsgs.forEach(msg => {{
1646
+ msg.style.display = msg.getAttribute('data-lang') === currentLang ? 'block' : 'none';
1647
+ }});
1648
+
1649
+ // 确保Gradio默认错误UI不显示
1650
+ const defaultErrorElements = document.querySelectorAll('.error');
1651
+ defaultErrorElements.forEach(el => {{
1652
+ el.style.display = 'none';
1653
+ }});
1654
+ }}
1655
+ }})();
1656
+ </script>
1657
+ """