Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -8,9 +8,11 @@ from requests.adapters import HTTPAdapter
|
|
8 |
from urllib3.util.retry import Retry
|
9 |
import json
|
10 |
|
11 |
-
os.environ['HF_HOME'] = os.path.abspath(
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
translations = {
|
15 |
"en": {
|
16 |
"title": "FramePack - Image to Video Generation",
|
@@ -43,57 +45,16 @@ translations = {
|
|
43 |
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
|
44 |
"partial_video": "Processing error, but partial video has been generated",
|
45 |
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
|
46 |
-
},
|
47 |
-
"ko": {
|
48 |
-
"title": "FramePack - 이미지에서 동영상 생성",
|
49 |
-
"upload_image": "이미지 업로드",
|
50 |
-
"prompt": "프롬프트",
|
51 |
-
"quick_prompts": "빠른 프롬프트 목록",
|
52 |
-
"start_generation": "생성 시작",
|
53 |
-
"stop_generation": "생성 중지",
|
54 |
-
"use_teacache": "TeaCache 사용",
|
55 |
-
"teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.",
|
56 |
-
"negative_prompt": "부정 프롬프트",
|
57 |
-
"seed": "랜덤 시드",
|
58 |
-
"video_length": "동영상 길이 (최대 5초)",
|
59 |
-
"latent_window": "잠재 윈도우 크기",
|
60 |
-
"steps": "추론 스텝 수",
|
61 |
-
"steps_info": "이 값을 변경하는 것은 권장되지 않습니다.",
|
62 |
-
"cfg_scale": "CFG 스케일",
|
63 |
-
"distilled_cfg": "증류된 CFG 스케일",
|
64 |
-
"distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.",
|
65 |
-
"cfg_rescale": "CFG 재스케일",
|
66 |
-
"gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)",
|
67 |
-
"gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.",
|
68 |
-
"next_latents": "다음 잠재 변수",
|
69 |
-
"generated_video": "생성된 동영상",
|
70 |
-
"sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 동영상에 나타나지 않으면 기다려 주십시오. 나중에 생성됩니다.",
|
71 |
-
"error_message": "오류 메시지",
|
72 |
-
"processing_error": "처리 중 오류 발생",
|
73 |
-
"network_error": "네트워크 연결이 불안정하여 모델 다운로드가 시간 초과되었습니다. 나중에 다시 시도해 주십시오.",
|
74 |
-
"memory_error": "GPU 메모리가 부족합니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요.",
|
75 |
-
"model_error": "모델 로드에 실패했습니다. 네트워크 문제 또는 서버 부하가 높을 수 있습니다. 나중에 다시 시도해 주십시오.",
|
76 |
-
"partial_video": "처리 중 오류가 발생했지만 일부 동영상이 생성되었습니다.",
|
77 |
-
"processing_interrupt": "처리 중 중단되었지만 일부 동영상이 생성되었습니다."
|
78 |
}
|
79 |
}
|
80 |
|
81 |
-
#
|
82 |
-
def get_translation(key
|
83 |
-
if lang in translations and key in translations[lang]:
|
84 |
-
return translations[lang][key]
|
85 |
-
# 기본값(영어) 반환
|
86 |
return translations["en"].get(key, key)
|
87 |
|
88 |
-
#
|
89 |
current_language = "en"
|
90 |
|
91 |
-
# 언어 전환 함수
|
92 |
-
def switch_language():
|
93 |
-
global current_language
|
94 |
-
current_language = "ko" if current_language == "en" else "en"
|
95 |
-
return current_language
|
96 |
-
|
97 |
import gradio as gr
|
98 |
import torch
|
99 |
import traceback
|
@@ -102,148 +63,219 @@ import safetensors.torch as sf
|
|
102 |
import numpy as np
|
103 |
import math
|
104 |
|
105 |
-
#
|
106 |
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
107 |
|
108 |
-
# GPU 사용 여부
|
109 |
GPU_AVAILABLE = False
|
110 |
GPU_INITIALIZED = False
|
111 |
last_update_time = time.time()
|
112 |
|
113 |
-
# Spaces 환경이라면, spaces 모듈 불러오기 시도
|
114 |
if IN_HF_SPACE:
|
115 |
try:
|
116 |
import spaces
|
117 |
-
print("Hugging Face Space
|
118 |
-
|
119 |
-
# GPU 사용 가능 여부 확인
|
120 |
try:
|
121 |
GPU_AVAILABLE = torch.cuda.is_available()
|
122 |
print(f"GPU available: {GPU_AVAILABLE}")
|
123 |
if GPU_AVAILABLE:
|
124 |
-
|
125 |
-
print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
|
126 |
-
|
127 |
-
# 작은 테스트 연산으로 실제 GPU 동작 확인
|
128 |
-
test_tensor = torch.zeros(1, device='cuda')
|
129 |
-
test_tensor = test_tensor + 1
|
130 |
del test_tensor
|
131 |
-
print("GPU
|
132 |
-
else:
|
133 |
-
print("경고: CUDA는 가능하다고 하나 실제 GPU 디바이스를 찾을 수 없습니다.")
|
134 |
except Exception as e:
|
135 |
GPU_AVAILABLE = False
|
136 |
-
print(f"
|
137 |
-
print("CPU 모드로 진행합니다.")
|
138 |
except ImportError:
|
139 |
-
print("spaces 모듈을 불러올 수 없습니다. Spaces 환경이 아닐 수 있습니다.")
|
140 |
GPU_AVAILABLE = torch.cuda.is_available()
|
141 |
|
142 |
from PIL import Image
|
143 |
from diffusers import AutoencoderKLHunyuanVideo
|
144 |
-
from transformers import
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
148 |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
149 |
-
from diffusers_helper.memory import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
from diffusers_helper.thread_utils import AsyncStream, async_run
|
151 |
-
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
152 |
-
from transformers import SiglipImageProcessor, SiglipVisionModel
|
153 |
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
154 |
-
from diffusers_helper.
|
|
|
|
|
|
|
155 |
|
156 |
outputs_folder = './outputs/'
|
157 |
os.makedirs(outputs_folder, exist_ok=True)
|
158 |
|
159 |
-
#
|
160 |
if not IN_HF_SPACE:
|
161 |
try:
|
162 |
if torch.cuda.is_available():
|
163 |
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
164 |
-
print(f'
|
165 |
else:
|
166 |
-
free_mem_gb = 6.0
|
167 |
-
print("CUDA
|
168 |
except Exception as e:
|
169 |
free_mem_gb = 6.0
|
170 |
-
print(f"
|
171 |
-
|
172 |
high_vram = free_mem_gb > 60
|
173 |
-
print(f'high_vram 모드: {high_vram}')
|
174 |
else:
|
175 |
-
|
176 |
-
print("Spaces 환경에서 기본 메모리 설정 사용")
|
177 |
try:
|
178 |
if GPU_AVAILABLE:
|
179 |
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9
|
180 |
-
high_vram = free_mem_gb > 10
|
181 |
else:
|
182 |
free_mem_gb = 6.0
|
183 |
high_vram = False
|
184 |
except Exception as e:
|
185 |
-
print(f"GPU 메모리 확인 중 오류: {e}")
|
186 |
free_mem_gb = 6.0
|
187 |
high_vram = False
|
188 |
-
|
189 |
-
print(f'GPU 메모리: {free_mem_gb:.2f} GB, High-VRAM 모드: {high_vram}')
|
190 |
|
191 |
-
# 전역 모델 참조
|
192 |
models = {}
|
193 |
-
cpu_fallback_mode = not GPU_AVAILABLE
|
194 |
|
195 |
def load_models():
|
|
|
|
|
|
|
196 |
global models, cpu_fallback_mode, GPU_INITIALIZED
|
197 |
|
198 |
if GPU_INITIALIZED:
|
199 |
-
print("
|
200 |
return models
|
201 |
-
|
202 |
-
print("
|
203 |
|
204 |
try:
|
205 |
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
|
206 |
-
model_device = 'cpu'
|
207 |
-
|
208 |
-
# 기본적으로 GPU면 float16, CPU면 float32
|
209 |
dtype = torch.float16 if GPU_AVAILABLE else torch.float32
|
210 |
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
|
211 |
-
|
212 |
-
print(f"사용 디바이스: {device}, vae/text encoder dtype: {dtype}, transformer dtype: {transformer_dtype}")
|
213 |
-
|
214 |
-
try:
|
215 |
-
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to(model_device)
|
216 |
-
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to(model_device)
|
217 |
-
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
218 |
-
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
219 |
-
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to(model_device)
|
220 |
|
221 |
-
|
222 |
-
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to(model_device)
|
223 |
|
224 |
-
|
225 |
-
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
227 |
except Exception as e:
|
228 |
-
print(f"
|
229 |
-
print("
|
230 |
-
|
231 |
dtype = torch.float32
|
232 |
transformer_dtype = torch.float32
|
233 |
cpu_fallback_mode = True
|
234 |
-
|
235 |
-
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to('cpu')
|
236 |
-
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to('cpu')
|
237 |
-
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
238 |
-
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
239 |
-
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to('cpu')
|
240 |
|
241 |
-
|
242 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
243 |
|
244 |
-
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
247 |
|
248 |
vae.eval()
|
249 |
text_encoder.eval()
|
@@ -256,7 +288,7 @@ def load_models():
|
|
256 |
vae.enable_tiling()
|
257 |
|
258 |
transformer.high_quality_fp32_output_for_inference = True
|
259 |
-
print(
|
260 |
|
261 |
if not cpu_fallback_mode:
|
262 |
transformer.to(dtype=transformer_dtype)
|
@@ -274,7 +306,6 @@ def load_models():
|
|
274 |
if torch.cuda.is_available() and not cpu_fallback_mode:
|
275 |
try:
|
276 |
if not high_vram:
|
277 |
-
# 메모리 최적화
|
278 |
DynamicSwapInstaller.install_model(transformer, device=device)
|
279 |
DynamicSwapInstaller.install_model(text_encoder, device=device)
|
280 |
else:
|
@@ -283,10 +314,9 @@ def load_models():
|
|
283 |
image_encoder.to(device)
|
284 |
vae.to(device)
|
285 |
transformer.to(device)
|
286 |
-
print(f"
|
287 |
except Exception as e:
|
288 |
-
print(f"
|
289 |
-
print("CPU 모드로 전환")
|
290 |
cpu_fallback_mode = True
|
291 |
|
292 |
models_local = {
|
@@ -299,116 +329,156 @@ def load_models():
|
|
299 |
'image_encoder': image_encoder,
|
300 |
'transformer': transformer
|
301 |
}
|
302 |
-
|
303 |
GPU_INITIALIZED = True
|
304 |
models.update(models_local)
|
305 |
-
print(f"
|
306 |
return models
|
307 |
except Exception as e:
|
308 |
-
print(f"
|
309 |
traceback.print_exc()
|
310 |
-
|
311 |
-
error_info = {
|
312 |
-
"error": str(e),
|
313 |
-
"traceback": traceback.format_exc(),
|
314 |
-
"cuda_available": torch.cuda.is_available(),
|
315 |
-
"device": "cpu" if cpu_fallback_mode else "cuda",
|
316 |
-
}
|
317 |
-
|
318 |
-
try:
|
319 |
-
with open(os.path.join(outputs_folder, "error_log.txt"), "w") as f:
|
320 |
-
f.write(str(error_info))
|
321 |
-
except:
|
322 |
-
pass
|
323 |
-
|
324 |
cpu_fallback_mode = True
|
325 |
return {}
|
326 |
|
|
|
327 |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
|
328 |
try:
|
329 |
@spaces.GPU
|
330 |
def initialize_models():
|
331 |
-
"""@spaces.GPU 환경에서 모델을 초기화"""
|
332 |
global GPU_INITIALIZED
|
333 |
try:
|
334 |
result = load_models()
|
335 |
GPU_INITIALIZED = True
|
336 |
return result
|
337 |
except Exception as e:
|
338 |
-
print(f"@spaces.GPU
|
339 |
-
traceback.print_exc()
|
340 |
global cpu_fallback_mode
|
341 |
cpu_fallback_mode = True
|
342 |
return load_models()
|
343 |
except Exception as e:
|
344 |
-
print(f"spaces.GPU
|
345 |
def initialize_models():
|
346 |
return load_models()
|
|
|
|
|
|
|
347 |
|
348 |
def get_models():
|
349 |
-
"""
|
350 |
-
|
351 |
-
|
|
|
352 |
model_loading_key = "__model_loading__"
|
353 |
-
|
354 |
if not models:
|
355 |
if model_loading_key in globals():
|
356 |
-
print("
|
357 |
import time
|
358 |
start_wait = time.time()
|
359 |
-
while not models and model_loading_key in globals():
|
360 |
time.sleep(0.5)
|
361 |
if time.time() - start_wait > 60:
|
362 |
-
print("
|
363 |
break
|
364 |
-
|
365 |
if models:
|
366 |
return models
|
367 |
-
|
368 |
try:
|
369 |
globals()[model_loading_key] = True
|
370 |
-
|
371 |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
|
372 |
try:
|
373 |
-
print("
|
374 |
models_local = initialize_models()
|
375 |
models.update(models_local)
|
376 |
except Exception as e:
|
377 |
-
print(f"
|
378 |
models_local = load_models()
|
379 |
models.update(models_local)
|
380 |
else:
|
381 |
-
print("모델 직접 로딩 시도")
|
382 |
models_local = load_models()
|
383 |
models.update(models_local)
|
384 |
except Exception as e:
|
385 |
-
print(f"
|
386 |
-
traceback.print_exc()
|
387 |
models.clear()
|
388 |
finally:
|
389 |
if model_loading_key in globals():
|
390 |
del globals()[model_loading_key]
|
391 |
-
|
392 |
return models
|
393 |
|
394 |
stream = AsyncStream()
|
395 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
@torch.no_grad()
|
397 |
-
def worker(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
398 |
global last_update_time
|
399 |
last_update_time = time.time()
|
400 |
-
|
401 |
total_second_length = min(total_second_length, 5.0)
|
402 |
-
|
403 |
try:
|
404 |
models_local = get_models()
|
405 |
if not models_local:
|
406 |
-
error_msg = "
|
407 |
print(error_msg)
|
408 |
stream.output_queue.push(('error', error_msg))
|
409 |
stream.output_queue.push(('end', None))
|
410 |
return
|
411 |
-
|
412 |
text_encoder = models_local['text_encoder']
|
413 |
text_encoder_2 = models_local['text_encoder_2']
|
414 |
tokenizer = models_local['tokenizer']
|
@@ -418,22 +488,22 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
418 |
image_encoder = models_local['image_encoder']
|
419 |
transformer = models_local['transformer']
|
420 |
except Exception as e:
|
421 |
-
|
422 |
-
print(
|
423 |
traceback.print_exc()
|
424 |
-
stream.output_queue.push(('error',
|
425 |
stream.output_queue.push(('end', None))
|
426 |
return
|
427 |
-
|
428 |
-
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
|
429 |
-
print(f"
|
430 |
|
431 |
if cpu_fallback_mode:
|
432 |
-
print("CPU
|
433 |
latent_window_size = min(latent_window_size, 5)
|
434 |
steps = min(steps, 15)
|
435 |
total_second_length = min(total_second_length, 2.0)
|
436 |
-
|
437 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
438 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
439 |
|
@@ -443,6 +513,8 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
443 |
history_latents = None
|
444 |
total_generated_latent_frames = 0
|
445 |
|
|
|
|
|
446 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
447 |
|
448 |
try:
|
@@ -452,95 +524,102 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
452 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
453 |
)
|
454 |
except Exception as e:
|
455 |
-
print(f"
|
456 |
-
|
457 |
-
#
|
458 |
last_update_time = time.time()
|
459 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding
|
460 |
|
461 |
try:
|
462 |
if not high_vram and not cpu_fallback_mode:
|
463 |
fake_diffusers_current_device(text_encoder, device)
|
464 |
load_model_as_complete(text_encoder_2, target_device=device)
|
465 |
|
466 |
-
llama_vec, clip_l_pooler = encode_prompt_conds(
|
|
|
|
|
467 |
|
468 |
if cfg == 1:
|
469 |
-
llama_vec_n, clip_l_pooler_n =
|
|
|
|
|
|
|
470 |
else:
|
471 |
-
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(
|
|
|
|
|
472 |
|
473 |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
474 |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
475 |
except Exception as e:
|
476 |
-
|
477 |
-
print(
|
478 |
traceback.print_exc()
|
479 |
-
stream.output_queue.push(('error',
|
480 |
stream.output_queue.push(('end', None))
|
481 |
return
|
482 |
|
483 |
-
#
|
484 |
last_update_time = time.time()
|
485 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing
|
486 |
|
487 |
try:
|
488 |
H, W, C = input_image.shape
|
489 |
height, width = find_nearest_bucket(H, W, resolution=640)
|
490 |
-
|
491 |
if cpu_fallback_mode:
|
492 |
height = min(height, 320)
|
493 |
width = min(width, 320)
|
494 |
-
|
495 |
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
496 |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
497 |
|
498 |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
499 |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
500 |
except Exception as e:
|
501 |
-
|
502 |
-
print(
|
503 |
traceback.print_exc()
|
504 |
-
stream.output_queue.push(('error',
|
505 |
stream.output_queue.push(('end', None))
|
506 |
return
|
507 |
|
508 |
-
# VAE
|
509 |
last_update_time = time.time()
|
510 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding
|
511 |
|
512 |
try:
|
513 |
if not high_vram and not cpu_fallback_mode:
|
514 |
load_model_as_complete(vae, target_device=device)
|
515 |
-
|
516 |
start_latent = vae_encode(input_image_pt, vae)
|
517 |
except Exception as e:
|
518 |
-
|
519 |
-
print(
|
520 |
traceback.print_exc()
|
521 |
-
stream.output_queue.push(('error',
|
522 |
stream.output_queue.push(('end', None))
|
523 |
return
|
524 |
|
525 |
-
# CLIP Vision
|
526 |
last_update_time = time.time()
|
527 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision
|
528 |
|
529 |
try:
|
530 |
if not high_vram and not cpu_fallback_mode:
|
531 |
load_model_as_complete(image_encoder, target_device=device)
|
532 |
-
|
533 |
-
|
|
|
534 |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
535 |
except Exception as e:
|
536 |
-
|
537 |
-
print(
|
538 |
traceback.print_exc()
|
539 |
-
stream.output_queue.push(('error',
|
540 |
stream.output_queue.push(('end', None))
|
541 |
return
|
542 |
|
543 |
-
# dtype
|
544 |
try:
|
545 |
llama_vec = llama_vec.to(transformer.dtype)
|
546 |
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
@@ -548,67 +627,81 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
548 |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
549 |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
550 |
except Exception as e:
|
551 |
-
|
552 |
-
print(
|
553 |
traceback.print_exc()
|
554 |
-
stream.output_queue.push(('error',
|
555 |
stream.output_queue.push(('end', None))
|
556 |
return
|
557 |
|
558 |
-
#
|
559 |
last_update_time = time.time()
|
560 |
-
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling
|
561 |
|
562 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
563 |
num_frames = latent_window_size * 4 - 3
|
564 |
|
565 |
try:
|
566 |
-
history_latents = torch.zeros(
|
|
|
|
|
|
|
567 |
history_pixels = None
|
568 |
total_generated_latent_frames = 0
|
569 |
except Exception as e:
|
570 |
-
|
571 |
-
print(
|
572 |
traceback.print_exc()
|
573 |
-
stream.output_queue.push(('error',
|
574 |
stream.output_queue.push(('end', None))
|
575 |
return
|
576 |
|
577 |
-
latent_paddings = reversed(range(total_latent_sections))
|
578 |
if total_latent_sections > 4:
|
|
|
579 |
latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0]
|
580 |
|
581 |
for latent_padding in latent_paddings:
|
582 |
last_update_time = time.time()
|
583 |
-
is_last_section = latent_padding == 0
|
584 |
latent_padding_size = latent_padding * latent_window_size
|
585 |
|
586 |
if stream.input_queue.top() == 'end':
|
587 |
-
#
|
588 |
if history_pixels is not None and total_generated_latent_frames > 0:
|
589 |
try:
|
590 |
-
|
591 |
-
|
592 |
-
|
|
|
|
|
593 |
except Exception as e:
|
594 |
-
print(f"
|
595 |
-
|
596 |
stream.output_queue.push(('end', None))
|
597 |
return
|
598 |
|
599 |
-
print(f
|
600 |
|
601 |
try:
|
602 |
-
indices = torch.arange(
|
603 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
604 |
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
|
605 |
|
606 |
clean_latents_pre = start_latent.to(history_latents)
|
607 |
-
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16
|
608 |
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
|
609 |
except Exception as e:
|
610 |
-
|
611 |
-
print(
|
612 |
traceback.print_exc()
|
613 |
if last_output_filename:
|
614 |
stream.output_queue.push(('file', last_output_filename))
|
@@ -617,15 +710,17 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
617 |
if not high_vram and not cpu_fallback_mode:
|
618 |
try:
|
619 |
unload_complete_models()
|
620 |
-
move_model_to_device_with_memory_preservation(
|
|
|
|
|
621 |
except Exception as e:
|
622 |
-
print(f"transformer GPU
|
623 |
|
624 |
if use_teacache and not cpu_fallback_mode:
|
625 |
try:
|
626 |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
627 |
except Exception as e:
|
628 |
-
print(f"
|
629 |
transformer.initialize_teacache(enable_teacache=False)
|
630 |
else:
|
631 |
transformer.initialize_teacache(enable_teacache=False)
|
@@ -633,33 +728,31 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
633 |
def callback(d):
|
634 |
global last_update_time
|
635 |
last_update_time = time.time()
|
636 |
-
|
637 |
try:
|
638 |
if stream.input_queue.top() == 'end':
|
639 |
stream.output_queue.push(('end', None))
|
640 |
-
raise KeyboardInterrupt('
|
641 |
-
|
642 |
preview = d['denoised']
|
643 |
preview = vae_decode_fake(preview)
|
644 |
-
|
645 |
-
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
646 |
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
647 |
|
648 |
-
|
649 |
-
percentage = int(100.0 *
|
650 |
-
hint = f'Sampling {
|
651 |
-
desc = f'Total
|
652 |
-
|
|
|
653 |
except KeyboardInterrupt:
|
654 |
raise
|
655 |
except Exception as e:
|
656 |
-
print(f"
|
657 |
return
|
658 |
|
659 |
try:
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
try:
|
664 |
generated_latents = sample_hunyuan(
|
665 |
transformer=transformer,
|
@@ -688,144 +781,134 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
|
|
688 |
clean_latent_2x_indices=clean_latent_2x_indices,
|
689 |
clean_latents_4x=clean_latents_4x,
|
690 |
clean_latent_4x_indices=clean_latent_4x_indices,
|
691 |
-
callback=callback
|
692 |
)
|
693 |
-
|
694 |
-
print(f"샘플링 완료. 소요 시간: {time.time() - sampling_start_time:.2f} 초")
|
695 |
except KeyboardInterrupt as e:
|
696 |
-
print(f"
|
697 |
if last_output_filename:
|
698 |
stream.output_queue.push(('file', last_output_filename))
|
699 |
-
|
700 |
else:
|
701 |
-
|
702 |
-
|
703 |
-
stream.output_queue.push(('error', error_msg))
|
704 |
stream.output_queue.push(('end', None))
|
705 |
return
|
706 |
except Exception as e:
|
707 |
-
print(f"
|
708 |
traceback.print_exc()
|
709 |
if last_output_filename:
|
710 |
stream.output_queue.push(('file', last_output_filename))
|
711 |
-
|
712 |
-
stream.output_queue.push(('error',
|
713 |
else:
|
714 |
-
|
715 |
-
stream.output_queue.push(('error',
|
716 |
stream.output_queue.push(('end', None))
|
717 |
return
|
718 |
|
719 |
try:
|
720 |
if is_last_section:
|
721 |
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
|
722 |
-
|
723 |
total_generated_latent_frames += int(generated_latents.shape[2])
|
724 |
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
725 |
except Exception as e:
|
726 |
-
|
727 |
-
print(
|
728 |
traceback.print_exc()
|
729 |
if last_output_filename:
|
730 |
stream.output_queue.push(('file', last_output_filename))
|
731 |
-
stream.output_queue.push(('error',
|
732 |
stream.output_queue.push(('end', None))
|
733 |
return
|
734 |
|
735 |
if not high_vram and not cpu_fallback_mode:
|
736 |
try:
|
737 |
-
offload_model_from_device_for_memory_preservation(
|
|
|
|
|
738 |
load_model_as_complete(vae, target_device=device)
|
739 |
except Exception as e:
|
740 |
-
print(f"
|
741 |
|
742 |
try:
|
743 |
-
real_history_latents = history_latents[:, :, :total_generated_latent_frames
|
744 |
except Exception as e:
|
745 |
-
|
746 |
-
print(
|
747 |
if last_output_filename:
|
748 |
stream.output_queue.push(('file', last_output_filename))
|
749 |
continue
|
750 |
|
751 |
try:
|
752 |
-
|
753 |
-
print(f"VAE 디코딩 시작, 잠재 변수 크기: {real_history_latents.shape}")
|
754 |
-
|
755 |
if history_pixels is None:
|
756 |
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
757 |
else:
|
758 |
-
|
|
|
|
|
|
|
759 |
overlapped_frames = latent_window_size * 4 - 3
|
760 |
-
|
761 |
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
|
762 |
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
try:
|
768 |
-
unload_complete_models()
|
769 |
-
except Exception as e:
|
770 |
-
print(f"모델 언로드 중 오류: {e}")
|
771 |
-
|
772 |
-
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
773 |
-
|
774 |
-
save_start_time = time.time()
|
775 |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
776 |
-
print(f"비디오 저장 완료, 소요 시간: {time.time() - save_start_time:.2f} 초")
|
777 |
-
|
778 |
-
print(f'디코딩 완료. 현재 latent 크기: {real_history_latents.shape}, pixel 크기: {history_pixels.shape}')
|
779 |
-
|
780 |
last_output_filename = output_filename
|
781 |
stream.output_queue.push(('file', output_filename))
|
782 |
except Exception as e:
|
783 |
-
print(f"
|
784 |
traceback.print_exc()
|
785 |
if last_output_filename:
|
786 |
stream.output_queue.push(('file', last_output_filename))
|
787 |
-
|
788 |
-
stream.output_queue.push(('error',
|
789 |
continue
|
790 |
|
791 |
if is_last_section:
|
792 |
break
|
793 |
except Exception as e:
|
794 |
-
print(f"
|
795 |
traceback.print_exc()
|
796 |
-
|
797 |
-
if isinstance(e, KeyboardInterrupt):
|
798 |
-
print("KeyboardInterrupt 발생")
|
799 |
-
|
800 |
if not high_vram and not cpu_fallback_mode:
|
801 |
try:
|
802 |
unload_complete_models(
|
803 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
804 |
)
|
805 |
-
except Exception as
|
806 |
-
print(f"
|
807 |
-
|
808 |
if last_output_filename:
|
809 |
stream.output_queue.push(('file', last_output_filename))
|
810 |
-
|
811 |
-
|
812 |
-
stream.output_queue.push(('error', error_msg))
|
813 |
|
814 |
-
print("
|
815 |
stream.output_queue.push(('end', None))
|
816 |
-
return
|
817 |
|
|
|
818 |
if IN_HF_SPACE and 'spaces' in globals():
|
819 |
@spaces.GPU
|
820 |
-
def process_with_gpu(
|
|
|
|
|
|
|
|
|
821 |
global stream
|
822 |
-
assert input_image is not None,
|
823 |
-
|
824 |
-
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
825 |
|
|
|
|
|
826 |
try:
|
827 |
stream = AsyncStream()
|
828 |
-
async_run(
|
|
|
|
|
|
|
|
|
|
|
829 |
|
830 |
output_filename = None
|
831 |
prev_output_filename = None
|
@@ -834,61 +917,73 @@ if IN_HF_SPACE and 'spaces' in globals():
|
|
834 |
while True:
|
835 |
try:
|
836 |
flag, data = stream.output_queue.next()
|
837 |
-
|
838 |
if flag == 'file':
|
839 |
output_filename = data
|
840 |
prev_output_filename = output_filename
|
841 |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
|
842 |
-
|
843 |
-
if flag == 'progress':
|
844 |
preview, desc, html = data
|
845 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
846 |
-
|
847 |
-
if flag == 'error':
|
848 |
error_message = data
|
849 |
-
print(f"
|
850 |
-
|
851 |
-
|
852 |
-
if output_filename is None and prev_output_filename is not None:
|
853 |
output_filename = prev_output_filename
|
854 |
-
|
855 |
if error_message:
|
856 |
-
|
857 |
-
yield
|
|
|
|
|
|
|
858 |
else:
|
859 |
-
yield
|
|
|
|
|
|
|
860 |
break
|
861 |
except Exception as e:
|
862 |
-
print(f"
|
863 |
-
|
864 |
-
|
865 |
-
print(f"처리가 {current_time - last_update_time:.1f}초 동안 정지됨. 타임��웃으로 간주.")
|
866 |
if prev_output_filename:
|
867 |
-
|
868 |
-
yield
|
|
|
|
|
|
|
869 |
else:
|
870 |
-
|
871 |
-
yield
|
|
|
|
|
|
|
872 |
break
|
873 |
except Exception as e:
|
874 |
-
print(f"
|
875 |
traceback.print_exc()
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
880 |
-
|
881 |
process = process_with_gpu
|
882 |
else:
|
883 |
-
def process(
|
|
|
|
|
|
|
|
|
884 |
global stream
|
885 |
-
assert input_image is not None,
|
886 |
-
|
887 |
-
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
888 |
|
|
|
889 |
try:
|
890 |
stream = AsyncStream()
|
891 |
-
async_run(
|
|
|
|
|
|
|
|
|
|
|
892 |
|
893 |
output_filename = None
|
894 |
prev_output_filename = None
|
@@ -897,561 +992,314 @@ else:
|
|
897 |
while True:
|
898 |
try:
|
899 |
flag, data = stream.output_queue.next()
|
900 |
-
|
901 |
if flag == 'file':
|
902 |
output_filename = data
|
903 |
prev_output_filename = output_filename
|
904 |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
|
905 |
-
|
906 |
-
if flag == 'progress':
|
907 |
preview, desc, html = data
|
908 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
909 |
-
|
910 |
-
if flag == 'error':
|
911 |
error_message = data
|
912 |
-
print(f"
|
913 |
-
|
914 |
-
|
915 |
-
if output_filename is None and prev_output_filename is not None:
|
916 |
output_filename = prev_output_filename
|
917 |
-
|
918 |
if error_message:
|
919 |
-
|
920 |
-
yield
|
|
|
|
|
|
|
921 |
else:
|
922 |
-
yield
|
|
|
|
|
|
|
923 |
break
|
924 |
except Exception as e:
|
925 |
-
print(f"
|
926 |
-
|
927 |
-
|
928 |
-
print(f"{current_time - last_update_time:.1f}초 동안 진행이 없어 타임아웃으로 간주합니다.")
|
929 |
if prev_output_filename:
|
930 |
-
|
931 |
-
yield
|
|
|
|
|
|
|
932 |
else:
|
933 |
-
|
934 |
-
yield
|
|
|
|
|
|
|
935 |
break
|
936 |
except Exception as e:
|
937 |
-
print(f"
|
938 |
traceback.print_exc()
|
939 |
-
|
940 |
-
|
941 |
-
error_html = create_error_html(error_msg)
|
942 |
-
yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
|
943 |
|
944 |
def end_process():
|
945 |
-
|
|
|
|
|
|
|
|
|
946 |
if 'stream' in globals() and stream is not None:
|
947 |
try:
|
948 |
-
|
949 |
-
print(f"
|
950 |
except Exception as e:
|
951 |
-
print(f"
|
952 |
try:
|
953 |
stream.input_queue.push('end')
|
954 |
-
print("end
|
955 |
-
try:
|
956 |
-
current_top_after = stream.input_queue.top()
|
957 |
-
print(f"신호 전송 후 입력 큐 top: {current_top_after}")
|
958 |
-
except Exception as e:
|
959 |
-
print(f"신호 전송 후 큐 상태 확인 오류: {e}")
|
960 |
except Exception as e:
|
961 |
-
print(f"
|
962 |
else:
|
963 |
-
print("
|
964 |
return None
|
965 |
|
|
|
966 |
quick_prompts = [
|
967 |
-
|
968 |
-
|
969 |
]
|
970 |
-
quick_prompts = [[x] for x in quick_prompts]
|
971 |
|
|
|
972 |
def make_custom_css():
|
973 |
-
|
974 |
-
|
975 |
-
|
976 |
-
|
977 |
-
|
|
|
|
|
978 |
#app-container {
|
979 |
-
max-width:
|
980 |
margin: 0 auto;
|
|
|
|
|
981 |
}
|
982 |
-
|
983 |
-
|
984 |
-
|
985 |
-
|
986 |
-
right: 10px;
|
987 |
-
z-index: 1000;
|
988 |
-
background-color: rgba(0, 0, 0, 0.7);
|
989 |
-
color: white;
|
990 |
-
border: none;
|
991 |
-
border-radius: 4px;
|
992 |
-
padding: 5px 10px;
|
993 |
-
cursor: pointer;
|
994 |
-
font-size: 14px;
|
995 |
}
|
996 |
-
|
997 |
-
|
998 |
-
|
999 |
-
|
1000 |
-
|
|
|
1001 |
}
|
1002 |
-
|
1003 |
-
.start-btn, .stop-btn {
|
1004 |
min-height: 45px;
|
1005 |
font-size: 1rem;
|
|
|
1006 |
}
|
1007 |
-
|
1008 |
-
|
1009 |
-
|
1010 |
-
font-size: 1.5rem;
|
1011 |
-
margin-bottom: 0.5rem;
|
1012 |
-
}
|
1013 |
-
|
1014 |
-
.mobile-full-width {
|
1015 |
-
flex-direction: column !important;
|
1016 |
-
}
|
1017 |
-
|
1018 |
-
.mobile-full-width > .gr-block {
|
1019 |
-
min-width: 100% !important;
|
1020 |
-
flex-grow: 1;
|
1021 |
-
}
|
1022 |
-
|
1023 |
-
.video-container {
|
1024 |
-
height: auto !important;
|
1025 |
-
}
|
1026 |
-
|
1027 |
-
.button-container button {
|
1028 |
-
min-height: 50px;
|
1029 |
-
font-size: 1rem;
|
1030 |
-
touch-action: manipulation;
|
1031 |
-
}
|
1032 |
-
|
1033 |
-
.slider-container input[type="range"] {
|
1034 |
-
height: 30px;
|
1035 |
-
}
|
1036 |
}
|
1037 |
-
|
1038 |
-
|
1039 |
-
|
1040 |
-
width: 48% !important;
|
1041 |
-
}
|
1042 |
}
|
1043 |
-
|
1044 |
-
|
1045 |
-
.dark-mode-text {
|
1046 |
-
color: #f0f0f0;
|
1047 |
-
}
|
1048 |
-
.dark-mode-bg {
|
1049 |
-
background-color: #2a2a2a;
|
1050 |
-
}
|
1051 |
-
}
|
1052 |
-
|
1053 |
-
button, input, select, textarea {
|
1054 |
-
font-size: 16px;
|
1055 |
-
}
|
1056 |
-
|
1057 |
-
button, .interactive-element {
|
1058 |
-
min-height: 44px;
|
1059 |
-
min-width: 44px;
|
1060 |
}
|
1061 |
-
|
1062 |
-
|
1063 |
-
|
1064 |
-
|
1065 |
}
|
1066 |
-
|
1067 |
.progress-container {
|
1068 |
-
margin-top:
|
1069 |
-
margin-bottom:
|
1070 |
}
|
1071 |
-
|
1072 |
-
#error-message {
|
1073 |
-
color: #ff4444;
|
1074 |
-
font-weight: bold;
|
1075 |
-
padding: 10px;
|
1076 |
-
border-radius: 4px;
|
1077 |
-
margin-top: 10px;
|
1078 |
-
}
|
1079 |
-
|
1080 |
.error-message {
|
1081 |
-
background-color:
|
|
|
|
|
1082 |
padding: 10px;
|
1083 |
border-radius: 4px;
|
1084 |
margin-top: 10px;
|
1085 |
-
border: 1px solid #ffcccc;
|
1086 |
}
|
1087 |
-
|
1088 |
-
.error-msg-en, .error-msg-ko {
|
1089 |
-
font-weight: bold;
|
1090 |
-
}
|
1091 |
-
|
1092 |
.error-icon {
|
1093 |
-
color: #
|
1094 |
-
font-size: 18px;
|
1095 |
margin-right: 8px;
|
1096 |
}
|
1097 |
-
|
1098 |
-
|
1099 |
-
|
1100 |
-
|
1101 |
-
|
1102 |
-
margin:
|
1103 |
}
|
1104 |
-
|
1105 |
-
|
1106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1107 |
}
|
1108 |
"""
|
1109 |
-
|
1110 |
-
return progress_bar_css + responsive_css
|
1111 |
|
1112 |
css = make_custom_css()
|
|
|
|
|
1113 |
block = gr.Blocks(css=css).queue()
|
1114 |
with block:
|
1115 |
-
|
1116 |
-
|
1117 |
-
|
1118 |
-
</div>
|
1119 |
-
<script>
|
1120 |
-
window.currentLang = "en";
|
1121 |
-
function toggleLanguage() {
|
1122 |
-
window.currentLang = (window.currentLang === "en") ? "ko" : "en";
|
1123 |
-
|
1124 |
-
const elements = document.querySelectorAll('[data-i18n]');
|
1125 |
-
elements.forEach(el => {
|
1126 |
-
const key = el.getAttribute('data-i18n');
|
1127 |
-
const translations = {
|
1128 |
-
"en": {
|
1129 |
-
"title": "FramePack - Image to Video Generation",
|
1130 |
-
"upload_image": "Upload Image",
|
1131 |
-
"prompt": "Prompt",
|
1132 |
-
"quick_prompts": "Quick Prompts",
|
1133 |
-
"start_generation": "Generate",
|
1134 |
-
"stop_generation": "Stop",
|
1135 |
-
"use_teacache": "Use TeaCache",
|
1136 |
-
"teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
|
1137 |
-
"negative_prompt": "Negative Prompt",
|
1138 |
-
"seed": "Seed",
|
1139 |
-
"video_length": "Video Length (max 5 seconds)",
|
1140 |
-
"latent_window": "Latent Window Size",
|
1141 |
-
"steps": "Inference Steps",
|
1142 |
-
"steps_info": "Changing this value is not recommended.",
|
1143 |
-
"cfg_scale": "CFG Scale",
|
1144 |
-
"distilled_cfg": "Distilled CFG Scale",
|
1145 |
-
"distilled_cfg_info": "Changing this value is not recommended.",
|
1146 |
-
"cfg_rescale": "CFG Rescale",
|
1147 |
-
"gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
|
1148 |
-
"gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
|
1149 |
-
"next_latents": "Next Latents",
|
1150 |
-
"generated_video": "Generated Video",
|
1151 |
-
"sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
|
1152 |
-
"error_message": "Error"
|
1153 |
-
},
|
1154 |
-
"ko": {
|
1155 |
-
"title": "FramePack - 이미지에서 동영상 생성",
|
1156 |
-
"upload_image": "이미지 업로드",
|
1157 |
-
"prompt": "프롬프트",
|
1158 |
-
"quick_prompts": "빠른 프롬프트 목록",
|
1159 |
-
"start_generation": "생성 시작",
|
1160 |
-
"stop_generation": "생성 중지",
|
1161 |
-
"use_teacache": "TeaCache 사용",
|
1162 |
-
"teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.",
|
1163 |
-
"negative_prompt": "부정 프롬프트",
|
1164 |
-
"seed": "랜덤 시드",
|
1165 |
-
"video_length": "동영상 길이 (최대 5초)",
|
1166 |
-
"latent_window": "잠재 윈도우 크기",
|
1167 |
-
"steps": "추론 스텝 수",
|
1168 |
-
"steps_info": "이 값을 변경하는 것은 권장되지 않습니다.",
|
1169 |
-
"cfg_scale": "CFG 스케일",
|
1170 |
-
"distilled_cfg": "증류된 CFG 스케일",
|
1171 |
-
"distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.",
|
1172 |
-
"cfg_rescale": "CFG 재스케일",
|
1173 |
-
"gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)",
|
1174 |
-
"gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.",
|
1175 |
-
"next_latents": "다음 잠재 변수",
|
1176 |
-
"generated_video": "생성된 동영상",
|
1177 |
-
"sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 나타나지 않으면 기다려 주십시오.",
|
1178 |
-
"error_message": "오류 메시지"
|
1179 |
-
}
|
1180 |
-
};
|
1181 |
-
|
1182 |
-
if (translations[window.currentLang] && translations[window.currentLang][key]) {
|
1183 |
-
if (el.tagName === 'BUTTON') {
|
1184 |
-
el.textContent = translations[window.currentLang][key];
|
1185 |
-
} else if (el.tagName === 'LABEL') {
|
1186 |
-
el.textContent = translations[window.currentLang][key];
|
1187 |
-
} else {
|
1188 |
-
el.innerHTML = translations[window.currentLang][key];
|
1189 |
-
}
|
1190 |
-
}
|
1191 |
-
});
|
1192 |
-
|
1193 |
-
// bilingual-label 처리
|
1194 |
-
document.querySelectorAll('.bilingual-label').forEach(el => {
|
1195 |
-
const enText = el.getAttribute('data-en');
|
1196 |
-
const koText = el.getAttribute('data-ko');
|
1197 |
-
el.textContent = (window.currentLang === 'en') ? enText : koText;
|
1198 |
-
});
|
1199 |
-
|
1200 |
-
// data-lang 처리
|
1201 |
-
document.querySelectorAll('[data-lang]').forEach(el => {
|
1202 |
-
el.style.display = (el.getAttribute('data-lang') === window.currentLang) ? 'block' : 'none';
|
1203 |
-
});
|
1204 |
-
}
|
1205 |
-
|
1206 |
-
document.addEventListener('DOMContentLoaded', function() {
|
1207 |
-
setTimeout(() => {
|
1208 |
-
// 매핑
|
1209 |
-
const labelMap = {
|
1210 |
-
"Upload Image": "upload_image",
|
1211 |
-
"이미지 업로드": "upload_image",
|
1212 |
-
"Prompt": "prompt",
|
1213 |
-
"프롬프트": "prompt",
|
1214 |
-
"Quick Prompts": "quick_prompts",
|
1215 |
-
"빠른 프롬프트 목록": "quick_prompts",
|
1216 |
-
"Generate": "start_generation",
|
1217 |
-
"생성 시작": "start_generation",
|
1218 |
-
"Stop": "stop_generation",
|
1219 |
-
"생성 중지": "stop_generation"
|
1220 |
-
};
|
1221 |
-
|
1222 |
-
document.querySelectorAll('label, span, button').forEach(el => {
|
1223 |
-
const text = el.textContent.trim();
|
1224 |
-
if (labelMap[text]) {
|
1225 |
-
el.setAttribute('data-i18n', labelMap[text]);
|
1226 |
-
}
|
1227 |
-
});
|
1228 |
-
|
1229 |
-
const titleEl = document.querySelector('h1');
|
1230 |
-
if (titleEl) titleEl.setAttribute('data-i18n', 'title');
|
1231 |
-
|
1232 |
-
toggleLanguage();
|
1233 |
-
}, 1000);
|
1234 |
-
});
|
1235 |
-
</script>
|
1236 |
-
""")
|
1237 |
-
|
1238 |
-
gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation</h1>")
|
1239 |
-
|
1240 |
with gr.Row(elem_classes="mobile-full-width"):
|
1241 |
-
with gr.Column(scale=1, elem_classes="
|
1242 |
input_image = gr.Image(
|
1243 |
-
|
1244 |
-
|
1245 |
-
|
1246 |
elem_id="input-image",
|
1247 |
height=320
|
1248 |
)
|
1249 |
-
|
1250 |
-
|
1251 |
-
label="Prompt",
|
1252 |
-
value='',
|
1253 |
-
elem_id="prompt-input"
|
1254 |
-
)
|
1255 |
-
|
1256 |
example_quick_prompts = gr.Dataset(
|
1257 |
-
samples=quick_prompts,
|
1258 |
-
label=
|
1259 |
-
samples_per_page=1000,
|
1260 |
components=[prompt]
|
1261 |
)
|
1262 |
example_quick_prompts.click(
|
1263 |
-
lambda x: x[0],
|
1264 |
-
inputs=[example_quick_prompts],
|
1265 |
-
outputs=prompt,
|
1266 |
-
show_progress=False,
|
1267 |
queue=False
|
1268 |
)
|
1269 |
-
|
1270 |
with gr.Row(elem_classes="button-container"):
|
1271 |
start_button = gr.Button(
|
1272 |
-
value="Generate",
|
1273 |
-
elem_classes="start-btn",
|
1274 |
elem_id="start-button",
|
1275 |
variant="primary"
|
1276 |
)
|
1277 |
-
|
1278 |
end_button = gr.Button(
|
1279 |
-
value="Stop",
|
1280 |
-
elem_classes="stop-btn",
|
1281 |
elem_id="stop-button",
|
1282 |
interactive=False
|
1283 |
)
|
1284 |
-
|
1285 |
-
with gr.Group():
|
1286 |
-
use_teacache = gr.Checkbox(
|
1287 |
-
label='Use TeaCache',
|
1288 |
-
value=True,
|
1289 |
-
info='Faster speed, but may result in slightly worse finger and hand generation.'
|
1290 |
-
)
|
1291 |
-
|
1292 |
-
n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
|
1293 |
-
|
1294 |
-
seed = gr.Number(
|
1295 |
-
label="Seed",
|
1296 |
-
value=31337,
|
1297 |
-
precision=0
|
1298 |
-
)
|
1299 |
-
|
1300 |
-
with gr.Group(elem_classes="slider-container"):
|
1301 |
-
total_second_length = gr.Slider(
|
1302 |
-
label="Video Length (max 5 seconds)",
|
1303 |
-
minimum=1,
|
1304 |
-
maximum=5,
|
1305 |
-
value=5,
|
1306 |
-
step=0.1
|
1307 |
-
)
|
1308 |
-
|
1309 |
-
latent_window_size = gr.Slider(
|
1310 |
-
label="Latent Window Size",
|
1311 |
-
minimum=1,
|
1312 |
-
maximum=33,
|
1313 |
-
value=9,
|
1314 |
-
step=1,
|
1315 |
-
visible=False
|
1316 |
-
)
|
1317 |
-
|
1318 |
-
steps = gr.Slider(
|
1319 |
-
label="Inference Steps",
|
1320 |
-
minimum=1,
|
1321 |
-
maximum=100,
|
1322 |
-
value=25,
|
1323 |
-
step=1,
|
1324 |
-
info='Changing this value is not recommended.'
|
1325 |
-
)
|
1326 |
-
|
1327 |
-
cfg = gr.Slider(
|
1328 |
-
label="CFG Scale",
|
1329 |
-
minimum=1.0,
|
1330 |
-
maximum=32.0,
|
1331 |
-
value=1.0,
|
1332 |
-
step=0.01,
|
1333 |
-
visible=False
|
1334 |
-
)
|
1335 |
-
|
1336 |
-
gs = gr.Slider(
|
1337 |
-
label="Distilled CFG Scale",
|
1338 |
-
minimum=1.0,
|
1339 |
-
maximum=32.0,
|
1340 |
-
value=10.0,
|
1341 |
-
step=0.01,
|
1342 |
-
info='Changing this value is not recommended.'
|
1343 |
-
)
|
1344 |
-
|
1345 |
-
rs = gr.Slider(
|
1346 |
-
label="CFG Rescale",
|
1347 |
-
minimum=0.0,
|
1348 |
-
maximum=1.0,
|
1349 |
-
value=0.0,
|
1350 |
-
step=0.01,
|
1351 |
-
visible=False
|
1352 |
-
)
|
1353 |
-
|
1354 |
-
gpu_memory_preservation = gr.Slider(
|
1355 |
-
label="GPU Memory (GB)",
|
1356 |
-
minimum=6,
|
1357 |
-
maximum=128,
|
1358 |
-
value=6,
|
1359 |
-
step=0.1,
|
1360 |
-
info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed."
|
1361 |
-
)
|
1362 |
-
|
1363 |
-
with gr.Column(scale=1, elem_classes="mobile-full-width"):
|
1364 |
-
preview_image = gr.Image(
|
1365 |
-
label="Preview",
|
1366 |
-
height=200,
|
1367 |
-
visible=False,
|
1368 |
-
elem_classes="preview-container"
|
1369 |
-
)
|
1370 |
|
1371 |
result_video = gr.Video(
|
1372 |
-
label="Generated Video",
|
1373 |
-
autoplay=True,
|
1374 |
-
show_share_button=True,
|
1375 |
-
height=512,
|
1376 |
loop=True,
|
|
|
1377 |
elem_classes="video-container",
|
1378 |
elem_id="result-video"
|
1379 |
)
|
1380 |
-
|
1381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1382 |
|
1383 |
with gr.Group(elem_classes="progress-container"):
|
1384 |
-
progress_desc = gr.Markdown(''
|
1385 |
-
progress_bar = gr.HTML(''
|
1386 |
|
1387 |
error_message = gr.HTML('', elem_id='error-message', visible=True)
|
1388 |
-
|
1389 |
-
ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
|
1390 |
|
1391 |
-
|
1392 |
-
|
1393 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1394 |
end_button.click(fn=end_process)
|
1395 |
|
1396 |
block.launch()
|
1397 |
-
|
1398 |
-
def create_error_html(error_msg, is_timeout=False):
|
1399 |
-
en_msg = ""
|
1400 |
-
ko_msg = ""
|
1401 |
-
|
1402 |
-
if is_timeout:
|
1403 |
-
if "부분" in error_msg or "partial" in error_msg:
|
1404 |
-
en_msg = "Processing timed out, but partial video has been generated."
|
1405 |
-
ko_msg = "처리 시간이 초과되었지만 일부 동영상이 생성되었습니다."
|
1406 |
-
else:
|
1407 |
-
en_msg = f"Processing timed out: {error_msg}"
|
1408 |
-
ko_msg = f"처리 시간 초과: {error_msg}"
|
1409 |
-
elif "모델 로드" in error_msg:
|
1410 |
-
en_msg = "Failed to load models. Possibly heavy traffic or GPU problem."
|
1411 |
-
ko_msg = "모델 로드에 실패했습니다. 과도한 트래픽 또는 GPU 문제일 수 있습니다."
|
1412 |
-
elif "GPU" in error_msg or "CUDA" in error_msg or "memory" in error_msg or "메모리" in error_msg:
|
1413 |
-
en_msg = "GPU memory insufficient or error. Increase GPU memory preservation or reduce video length."
|
1414 |
-
ko_msg = "GPU 메모리가 부족하거나 오류가 발생했습니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요."
|
1415 |
-
elif "샘플링 중 오류" in error_msg or "sampling process" in error_msg:
|
1416 |
-
if "부분" in error_msg or "partial" in error_msg:
|
1417 |
-
en_msg = "Error during sampling, but partial video has been generated."
|
1418 |
-
ko_msg = "샘플링 중 오류가 발생했지만 일부 동영상이 생성되었습니다."
|
1419 |
-
else:
|
1420 |
-
en_msg = "Error during sampling. Unable to generate video."
|
1421 |
-
ko_msg = "샘플링 중 오류가 발생했습니다. 비디오 생성에 실패했습니다."
|
1422 |
-
elif "네트워크" in error_msg or "Network" in error_msg or "ConnectionError" in error_msg or "ReadTimeoutError" in error_msg:
|
1423 |
-
en_msg = "Network is unstable, model download timed out. Please try again later."
|
1424 |
-
ko_msg = "네트워크가 불안정하여 모델 다운로드가 시간 초과되었습니다. 잠시 후 다시 시도해 주세요."
|
1425 |
-
elif "VAE" in error_msg or "디코딩" in error_msg or "decode" in error_msg:
|
1426 |
-
en_msg = "Error during video decoding or saving process. Try a different seed."
|
1427 |
-
ko_msg = "비디오 디코딩/저장 중 오류가 발생했습니다. 다른 시드를 시도해보세요."
|
1428 |
-
else:
|
1429 |
-
en_msg = f"Processing error: {error_msg}"
|
1430 |
-
ko_msg = f"처리 중 오류가 발생했습니다: {error_msg}"
|
1431 |
-
|
1432 |
-
return f"""
|
1433 |
-
<div class="error-message" id="custom-error-container">
|
1434 |
-
<div class="error-msg-en" data-lang="en">
|
1435 |
-
<span class="error-icon">⚠️</span> {en_msg}
|
1436 |
-
</div>
|
1437 |
-
<div class="error-msg-ko" data-lang="ko">
|
1438 |
-
<span class="error-icon">⚠️</span> {ko_msg}
|
1439 |
-
</div>
|
1440 |
-
</div>
|
1441 |
-
<script>
|
1442 |
-
(function() {{
|
1443 |
-
const errorContainer = document.getElementById('custom-error-container');
|
1444 |
-
if (errorContainer) {{
|
1445 |
-
const currentLang = window.currentLang || 'en';
|
1446 |
-
const errMsgs = errorContainer.querySelectorAll('[data-lang]');
|
1447 |
-
errMsgs.forEach(msg => {{
|
1448 |
-
msg.style.display = (msg.getAttribute('data-lang') === currentLang) ? 'block' : 'none';
|
1449 |
-
}});
|
1450 |
-
const defaultErrorElements = document.querySelectorAll('.error');
|
1451 |
-
defaultErrorElements.forEach(el => {{
|
1452 |
-
el.style.display = 'none';
|
1453 |
-
}});
|
1454 |
-
}}
|
1455 |
-
}})();
|
1456 |
-
</script>
|
1457 |
-
"""
|
|
|
8 |
from urllib3.util.retry import Retry
|
9 |
import json
|
10 |
|
11 |
+
os.environ['HF_HOME'] = os.path.abspath(
|
12 |
+
os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
|
13 |
+
)
|
14 |
|
15 |
+
# 단일 언어(영어)만 사용하기 위한 번역 딕셔너리
|
16 |
translations = {
|
17 |
"en": {
|
18 |
"title": "FramePack - Image to Video Generation",
|
|
|
45 |
"model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
|
46 |
"partial_video": "Processing error, but partial video has been generated",
|
47 |
"processing_interrupt": "Processing was interrupted, but partial video has been generated"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
}
|
49 |
}
|
50 |
|
51 |
+
# 영어만 사용할 것이므로 아래 함수는 사실상 항상 영어를 반환합니다.
|
52 |
+
def get_translation(key):
|
|
|
|
|
|
|
53 |
return translations["en"].get(key, key)
|
54 |
|
55 |
+
# 언어는 영어로 고정
|
56 |
current_language = "en"
|
57 |
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
import gradio as gr
|
59 |
import torch
|
60 |
import traceback
|
|
|
63 |
import numpy as np
|
64 |
import math
|
65 |
|
66 |
+
# Hugging Face Space 환경 체크
|
67 |
IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
|
68 |
|
69 |
+
# GPU 사용 여부 전역 관리
|
70 |
GPU_AVAILABLE = False
|
71 |
GPU_INITIALIZED = False
|
72 |
last_update_time = time.time()
|
73 |
|
|
|
74 |
if IN_HF_SPACE:
|
75 |
try:
|
76 |
import spaces
|
77 |
+
print("Running in Hugging Face Space environment.")
|
|
|
|
|
78 |
try:
|
79 |
GPU_AVAILABLE = torch.cuda.is_available()
|
80 |
print(f"GPU available: {GPU_AVAILABLE}")
|
81 |
if GPU_AVAILABLE:
|
82 |
+
test_tensor = torch.zeros(1, device='cuda') + 1
|
|
|
|
|
|
|
|
|
|
|
83 |
del test_tensor
|
84 |
+
print("GPU small test pass")
|
|
|
|
|
85 |
except Exception as e:
|
86 |
GPU_AVAILABLE = False
|
87 |
+
print(f"Error checking GPU: {e}")
|
|
|
88 |
except ImportError:
|
|
|
89 |
GPU_AVAILABLE = torch.cuda.is_available()
|
90 |
|
91 |
from PIL import Image
|
92 |
from diffusers import AutoencoderKLHunyuanVideo
|
93 |
+
from transformers import (
|
94 |
+
LlamaModel,
|
95 |
+
CLIPTextModel,
|
96 |
+
LlamaTokenizerFast,
|
97 |
+
CLIPTokenizer,
|
98 |
+
SiglipImageProcessor,
|
99 |
+
SiglipVisionModel
|
100 |
+
)
|
101 |
+
|
102 |
+
from diffusers_helper.hunyuan import (
|
103 |
+
encode_prompt_conds,
|
104 |
+
vae_decode,
|
105 |
+
vae_encode,
|
106 |
+
vae_decode_fake
|
107 |
+
)
|
108 |
+
|
109 |
+
from diffusers_helper.utils import (
|
110 |
+
save_bcthw_as_mp4,
|
111 |
+
crop_or_pad_yield_mask,
|
112 |
+
soft_append_bcthw,
|
113 |
+
resize_and_center_crop,
|
114 |
+
generate_timestamp
|
115 |
+
)
|
116 |
+
|
117 |
+
from diffusers_helper.bucket_tools import find_nearest_bucket
|
118 |
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
119 |
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
120 |
+
from diffusers_helper.memory import (
|
121 |
+
cpu,
|
122 |
+
gpu,
|
123 |
+
get_cuda_free_memory_gb,
|
124 |
+
move_model_to_device_with_memory_preservation,
|
125 |
+
offload_model_from_device_for_memory_preservation,
|
126 |
+
fake_diffusers_current_device,
|
127 |
+
DynamicSwapInstaller,
|
128 |
+
unload_complete_models,
|
129 |
+
load_model_as_complete
|
130 |
+
)
|
131 |
+
|
132 |
from diffusers_helper.thread_utils import AsyncStream, async_run
|
|
|
|
|
133 |
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
134 |
+
from diffusers_helper.gradio.progress_bar import (
|
135 |
+
make_progress_bar_css,
|
136 |
+
make_progress_bar_html
|
137 |
+
)
|
138 |
|
139 |
outputs_folder = './outputs/'
|
140 |
os.makedirs(outputs_folder, exist_ok=True)
|
141 |
|
142 |
+
# GPU 메모리 확인
|
143 |
if not IN_HF_SPACE:
|
144 |
try:
|
145 |
if torch.cuda.is_available():
|
146 |
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
147 |
+
print(f'Free VRAM: {free_mem_gb} GB')
|
148 |
else:
|
149 |
+
free_mem_gb = 6.0
|
150 |
+
print("CUDA not available, default memory setting used.")
|
151 |
except Exception as e:
|
152 |
free_mem_gb = 6.0
|
153 |
+
print(f"Error getting GPU mem: {e}, using default=6GB")
|
|
|
154 |
high_vram = free_mem_gb > 60
|
|
|
155 |
else:
|
156 |
+
print("Using default memory setting in Spaces environment.")
|
|
|
157 |
try:
|
158 |
if GPU_AVAILABLE:
|
159 |
free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9
|
160 |
+
high_vram = (free_mem_gb > 10)
|
161 |
else:
|
162 |
free_mem_gb = 6.0
|
163 |
high_vram = False
|
164 |
except Exception as e:
|
|
|
165 |
free_mem_gb = 6.0
|
166 |
high_vram = False
|
167 |
+
print(f'GPU memory: {free_mem_gb:.2f} GB, High-VRAM mode: {high_vram}')
|
|
|
168 |
|
|
|
169 |
models = {}
|
170 |
+
cpu_fallback_mode = not GPU_AVAILABLE
|
171 |
|
172 |
def load_models():
|
173 |
+
"""
|
174 |
+
Load or initialize the global models
|
175 |
+
"""
|
176 |
global models, cpu_fallback_mode, GPU_INITIALIZED
|
177 |
|
178 |
if GPU_INITIALIZED:
|
179 |
+
print("Models are already loaded, skipping re-initialization.")
|
180 |
return models
|
181 |
+
|
182 |
+
print("Start loading models...")
|
183 |
|
184 |
try:
|
185 |
device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
|
186 |
+
model_device = 'cpu'
|
187 |
+
|
|
|
188 |
dtype = torch.float16 if GPU_AVAILABLE else torch.float32
|
189 |
transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
+
print(f"Device: {device}, VAE/Encoders dtype={dtype}, Transformer dtype={transformer_dtype}")
|
|
|
192 |
|
193 |
+
try:
|
194 |
+
text_encoder = LlamaModel.from_pretrained(
|
195 |
+
"hunyuanvideo-community/HunyuanVideo",
|
196 |
+
subfolder='text_encoder',
|
197 |
+
torch_dtype=dtype
|
198 |
+
).to(model_device)
|
199 |
+
text_encoder_2 = CLIPTextModel.from_pretrained(
|
200 |
+
"hunyuanvideo-community/HunyuanVideo",
|
201 |
+
subfolder='text_encoder_2',
|
202 |
+
torch_dtype=dtype
|
203 |
+
).to(model_device)
|
204 |
+
tokenizer = LlamaTokenizerFast.from_pretrained(
|
205 |
+
"hunyuanvideo-community/HunyuanVideo",
|
206 |
+
subfolder='tokenizer'
|
207 |
+
)
|
208 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
209 |
+
"hunyuanvideo-community/HunyuanVideo",
|
210 |
+
subfolder='tokenizer_2'
|
211 |
+
)
|
212 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
213 |
+
"hunyuanvideo-community/HunyuanVideo",
|
214 |
+
subfolder='vae',
|
215 |
+
torch_dtype=dtype
|
216 |
+
).to(model_device)
|
217 |
+
|
218 |
+
feature_extractor = SiglipImageProcessor.from_pretrained(
|
219 |
+
"lllyasviel/flux_redux_bfl", subfolder='feature_extractor'
|
220 |
+
)
|
221 |
+
image_encoder = SiglipVisionModel.from_pretrained(
|
222 |
+
"lllyasviel/flux_redux_bfl",
|
223 |
+
subfolder='image_encoder',
|
224 |
+
torch_dtype=dtype
|
225 |
+
).to(model_device)
|
226 |
+
|
227 |
+
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
228 |
+
"lllyasviel/FramePackI2V_HY",
|
229 |
+
torch_dtype=transformer_dtype
|
230 |
+
).to(model_device)
|
231 |
+
|
232 |
+
print("All models loaded successfully.")
|
233 |
except Exception as e:
|
234 |
+
print(f"Error loading models: {e}")
|
235 |
+
print("Retry with float32 on CPU...")
|
|
|
236 |
dtype = torch.float32
|
237 |
transformer_dtype = torch.float32
|
238 |
cpu_fallback_mode = True
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
240 |
+
text_encoder = LlamaModel.from_pretrained(
|
241 |
+
"hunyuanvideo-community/HunyuanVideo",
|
242 |
+
subfolder='text_encoder',
|
243 |
+
torch_dtype=dtype
|
244 |
+
).to('cpu')
|
245 |
+
text_encoder_2 = CLIPTextModel.from_pretrained(
|
246 |
+
"hunyuanvideo-community/HunyuanVideo",
|
247 |
+
subfolder='text_encoder_2',
|
248 |
+
torch_dtype=dtype
|
249 |
+
).to('cpu')
|
250 |
+
tokenizer = LlamaTokenizerFast.from_pretrained(
|
251 |
+
"hunyuanvideo-community/HunyuanVideo",
|
252 |
+
subfolder='tokenizer'
|
253 |
+
)
|
254 |
+
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
255 |
+
"hunyuanvideo-community/HunyuanVideo",
|
256 |
+
subfolder='tokenizer_2'
|
257 |
+
)
|
258 |
+
vae = AutoencoderKLHunyuanVideo.from_pretrained(
|
259 |
+
"hunyuanvideo-community/HunyuanVideo",
|
260 |
+
subfolder='vae',
|
261 |
+
torch_dtype=dtype
|
262 |
+
).to('cpu')
|
263 |
+
|
264 |
+
feature_extractor = SiglipImageProcessor.from_pretrained(
|
265 |
+
"lllyasviel/flux_redux_bfl", subfolder='feature_extractor'
|
266 |
+
)
|
267 |
+
image_encoder = SiglipVisionModel.from_pretrained(
|
268 |
+
"lllyasviel/flux_redux_bfl",
|
269 |
+
subfolder='image_encoder',
|
270 |
+
torch_dtype=dtype
|
271 |
+
).to('cpu')
|
272 |
|
273 |
+
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
|
274 |
+
"lllyasviel/FramePackI2V_HY",
|
275 |
+
torch_dtype=transformer_dtype
|
276 |
+
).to('cpu')
|
277 |
+
|
278 |
+
print("Loaded in CPU-only fallback mode.")
|
279 |
|
280 |
vae.eval()
|
281 |
text_encoder.eval()
|
|
|
288 |
vae.enable_tiling()
|
289 |
|
290 |
transformer.high_quality_fp32_output_for_inference = True
|
291 |
+
print("transformer.high_quality_fp32_output_for_inference = True")
|
292 |
|
293 |
if not cpu_fallback_mode:
|
294 |
transformer.to(dtype=transformer_dtype)
|
|
|
306 |
if torch.cuda.is_available() and not cpu_fallback_mode:
|
307 |
try:
|
308 |
if not high_vram:
|
|
|
309 |
DynamicSwapInstaller.install_model(transformer, device=device)
|
310 |
DynamicSwapInstaller.install_model(text_encoder, device=device)
|
311 |
else:
|
|
|
314 |
image_encoder.to(device)
|
315 |
vae.to(device)
|
316 |
transformer.to(device)
|
317 |
+
print(f"Moved models to {device}")
|
318 |
except Exception as e:
|
319 |
+
print(f"Error moving models to {device}: {e}, fallback to CPU")
|
|
|
320 |
cpu_fallback_mode = True
|
321 |
|
322 |
models_local = {
|
|
|
329 |
'image_encoder': image_encoder,
|
330 |
'transformer': transformer
|
331 |
}
|
332 |
+
|
333 |
GPU_INITIALIZED = True
|
334 |
models.update(models_local)
|
335 |
+
print(f"Model load complete. Running mode: {'CPU' if cpu_fallback_mode else 'GPU'}")
|
336 |
return models
|
337 |
except Exception as e:
|
338 |
+
print(f"Unexpected error in load_models(): {e}")
|
339 |
traceback.print_exc()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
cpu_fallback_mode = True
|
341 |
return {}
|
342 |
|
343 |
+
# GPU 데코레이터 사용 여부 (Spaces 전용)
|
344 |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
|
345 |
try:
|
346 |
@spaces.GPU
|
347 |
def initialize_models():
|
|
|
348 |
global GPU_INITIALIZED
|
349 |
try:
|
350 |
result = load_models()
|
351 |
GPU_INITIALIZED = True
|
352 |
return result
|
353 |
except Exception as e:
|
354 |
+
print(f"Error in @spaces.GPU model init: {e}")
|
|
|
355 |
global cpu_fallback_mode
|
356 |
cpu_fallback_mode = True
|
357 |
return load_models()
|
358 |
except Exception as e:
|
359 |
+
print(f"Error creating spaces.GPU decorator: {e}")
|
360 |
def initialize_models():
|
361 |
return load_models()
|
362 |
+
else:
|
363 |
+
def initialize_models():
|
364 |
+
return load_models()
|
365 |
|
366 |
def get_models():
|
367 |
+
"""
|
368 |
+
Retrieve or load models if not loaded yet.
|
369 |
+
"""
|
370 |
+
global models
|
371 |
model_loading_key = "__model_loading__"
|
372 |
+
|
373 |
if not models:
|
374 |
if model_loading_key in globals():
|
375 |
+
print("Models are loading, please wait...")
|
376 |
import time
|
377 |
start_wait = time.time()
|
378 |
+
while (not models) and (model_loading_key in globals()):
|
379 |
time.sleep(0.5)
|
380 |
if time.time() - start_wait > 60:
|
381 |
+
print("Timed out waiting for model load.")
|
382 |
break
|
|
|
383 |
if models:
|
384 |
return models
|
|
|
385 |
try:
|
386 |
globals()[model_loading_key] = True
|
|
|
387 |
if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
|
388 |
try:
|
389 |
+
print("Loading models via @spaces.GPU decorator.")
|
390 |
models_local = initialize_models()
|
391 |
models.update(models_local)
|
392 |
except Exception as e:
|
393 |
+
print(f"Error with GPU decorator: {e}, direct load fallback.")
|
394 |
models_local = load_models()
|
395 |
models.update(models_local)
|
396 |
else:
|
|
|
397 |
models_local = load_models()
|
398 |
models.update(models_local)
|
399 |
except Exception as e:
|
400 |
+
print(f"Unexpected error while loading models: {e}")
|
|
|
401 |
models.clear()
|
402 |
finally:
|
403 |
if model_loading_key in globals():
|
404 |
del globals()[model_loading_key]
|
|
|
405 |
return models
|
406 |
|
407 |
stream = AsyncStream()
|
408 |
|
409 |
+
# 오류 메시지 HTML 생성 함수(영어만)
|
410 |
+
def create_error_html(error_msg, is_timeout=False):
|
411 |
+
"""
|
412 |
+
Create a user-friendly error message in English only
|
413 |
+
"""
|
414 |
+
if is_timeout:
|
415 |
+
if "partial" in error_msg:
|
416 |
+
en_msg = "Processing timed out, but partial video has been generated."
|
417 |
+
else:
|
418 |
+
en_msg = f"Processing timed out: {error_msg}"
|
419 |
+
elif "model load" in error_msg.lower():
|
420 |
+
en_msg = "Failed to load models. Possibly heavy traffic or GPU issues."
|
421 |
+
elif "gpu" in error_msg.lower() or "cuda" in error_msg.lower() or "memory" in error_msg.lower():
|
422 |
+
en_msg = "GPU memory insufficient or error. Please try increasing GPU memory or reduce video length."
|
423 |
+
elif "sampling" in error_msg.lower():
|
424 |
+
if "partial" in error_msg.lower():
|
425 |
+
en_msg = "Error during sampling process, but partial video has been generated."
|
426 |
+
else:
|
427 |
+
en_msg = "Error during sampling process. Unable to generate video."
|
428 |
+
elif "timeout" in error_msg.lower():
|
429 |
+
en_msg = "Network or model download timed out. Please try again later."
|
430 |
+
else:
|
431 |
+
en_msg = f"Processing error: {error_msg}"
|
432 |
+
|
433 |
+
return f"""
|
434 |
+
<div class="error-message" id="custom-error-container">
|
435 |
+
<div>
|
436 |
+
<span class="error-icon">⚠️</span> {en_msg}
|
437 |
+
</div>
|
438 |
+
</div>
|
439 |
+
<script>
|
440 |
+
// Hide default Gradio error UI
|
441 |
+
(function() {{
|
442 |
+
const defaultErrorElements = document.querySelectorAll('.error');
|
443 |
+
defaultErrorElements.forEach(el => {{
|
444 |
+
el.style.display = 'none';
|
445 |
+
}});
|
446 |
+
}})();
|
447 |
+
</script>
|
448 |
+
"""
|
449 |
+
|
450 |
@torch.no_grad()
|
451 |
+
def worker(
|
452 |
+
input_image,
|
453 |
+
prompt,
|
454 |
+
n_prompt,
|
455 |
+
seed,
|
456 |
+
total_second_length,
|
457 |
+
latent_window_size,
|
458 |
+
steps,
|
459 |
+
cfg,
|
460 |
+
gs,
|
461 |
+
rs,
|
462 |
+
gpu_memory_preservation,
|
463 |
+
use_teacache
|
464 |
+
):
|
465 |
+
"""
|
466 |
+
Actual generation logic in background thread.
|
467 |
+
"""
|
468 |
global last_update_time
|
469 |
last_update_time = time.time()
|
470 |
+
|
471 |
total_second_length = min(total_second_length, 5.0)
|
472 |
+
|
473 |
try:
|
474 |
models_local = get_models()
|
475 |
if not models_local:
|
476 |
+
error_msg = "Model load failed. Check logs for details."
|
477 |
print(error_msg)
|
478 |
stream.output_queue.push(('error', error_msg))
|
479 |
stream.output_queue.push(('end', None))
|
480 |
return
|
481 |
+
|
482 |
text_encoder = models_local['text_encoder']
|
483 |
text_encoder_2 = models_local['text_encoder_2']
|
484 |
tokenizer = models_local['tokenizer']
|
|
|
488 |
image_encoder = models_local['image_encoder']
|
489 |
transformer = models_local['transformer']
|
490 |
except Exception as e:
|
491 |
+
err = f"Error retrieving models: {e}"
|
492 |
+
print(err)
|
493 |
traceback.print_exc()
|
494 |
+
stream.output_queue.push(('error', err))
|
495 |
stream.output_queue.push(('end', None))
|
496 |
return
|
497 |
+
|
498 |
+
device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu'
|
499 |
+
print(f"Inference device: {device}")
|
500 |
|
501 |
if cpu_fallback_mode:
|
502 |
+
print("CPU fallback mode: reducing some parameters for performance.")
|
503 |
latent_window_size = min(latent_window_size, 5)
|
504 |
steps = min(steps, 15)
|
505 |
total_second_length = min(total_second_length, 2.0)
|
506 |
+
|
507 |
total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
|
508 |
total_latent_sections = int(max(round(total_latent_sections), 1))
|
509 |
|
|
|
513 |
history_latents = None
|
514 |
total_generated_latent_frames = 0
|
515 |
|
516 |
+
from diffusers_helper.memory import unload_complete_models
|
517 |
+
|
518 |
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
519 |
|
520 |
try:
|
|
|
524 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
525 |
)
|
526 |
except Exception as e:
|
527 |
+
print(f"Error unloading models: {e}")
|
528 |
+
|
529 |
+
# Text Encode
|
530 |
last_update_time = time.time()
|
531 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding...'))))
|
532 |
|
533 |
try:
|
534 |
if not high_vram and not cpu_fallback_mode:
|
535 |
fake_diffusers_current_device(text_encoder, device)
|
536 |
load_model_as_complete(text_encoder_2, target_device=device)
|
537 |
|
538 |
+
llama_vec, clip_l_pooler = encode_prompt_conds(
|
539 |
+
prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
540 |
+
)
|
541 |
|
542 |
if cfg == 1:
|
543 |
+
llama_vec_n, clip_l_pooler_n = (
|
544 |
+
torch.zeros_like(llama_vec),
|
545 |
+
torch.zeros_like(clip_l_pooler),
|
546 |
+
)
|
547 |
else:
|
548 |
+
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(
|
549 |
+
n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
|
550 |
+
)
|
551 |
|
552 |
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
553 |
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
554 |
except Exception as e:
|
555 |
+
err = f"Text encoding error: {e}"
|
556 |
+
print(err)
|
557 |
traceback.print_exc()
|
558 |
+
stream.output_queue.push(('error', err))
|
559 |
stream.output_queue.push(('end', None))
|
560 |
return
|
561 |
|
562 |
+
# Image processing
|
563 |
last_update_time = time.time()
|
564 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing...'))))
|
565 |
|
566 |
try:
|
567 |
H, W, C = input_image.shape
|
568 |
height, width = find_nearest_bucket(H, W, resolution=640)
|
569 |
+
|
570 |
if cpu_fallback_mode:
|
571 |
height = min(height, 320)
|
572 |
width = min(width, 320)
|
573 |
+
|
574 |
input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
|
575 |
Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
|
576 |
|
577 |
input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
|
578 |
input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
|
579 |
except Exception as e:
|
580 |
+
err = f"Image preprocess error: {e}"
|
581 |
+
print(err)
|
582 |
traceback.print_exc()
|
583 |
+
stream.output_queue.push(('error', err))
|
584 |
stream.output_queue.push(('end', None))
|
585 |
return
|
586 |
|
587 |
+
# VAE encoding
|
588 |
last_update_time = time.time()
|
589 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding...'))))
|
590 |
|
591 |
try:
|
592 |
if not high_vram and not cpu_fallback_mode:
|
593 |
load_model_as_complete(vae, target_device=device)
|
|
|
594 |
start_latent = vae_encode(input_image_pt, vae)
|
595 |
except Exception as e:
|
596 |
+
err = f"VAE encode error: {e}"
|
597 |
+
print(err)
|
598 |
traceback.print_exc()
|
599 |
+
stream.output_queue.push(('error', err))
|
600 |
stream.output_queue.push(('end', None))
|
601 |
return
|
602 |
|
603 |
+
# CLIP Vision
|
604 |
last_update_time = time.time()
|
605 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encode...'))))
|
606 |
|
607 |
try:
|
608 |
if not high_vram and not cpu_fallback_mode:
|
609 |
load_model_as_complete(image_encoder, target_device=device)
|
610 |
+
image_encoder_output = hf_clip_vision_encode(
|
611 |
+
input_image_np, feature_extractor, image_encoder
|
612 |
+
)
|
613 |
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
614 |
except Exception as e:
|
615 |
+
err = f"CLIP Vision encode error: {e}"
|
616 |
+
print(err)
|
617 |
traceback.print_exc()
|
618 |
+
stream.output_queue.push(('error', err))
|
619 |
stream.output_queue.push(('end', None))
|
620 |
return
|
621 |
|
622 |
+
# Convert dtype
|
623 |
try:
|
624 |
llama_vec = llama_vec.to(transformer.dtype)
|
625 |
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
|
|
627 |
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
628 |
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
629 |
except Exception as e:
|
630 |
+
err = f"Data type conversion error: {e}"
|
631 |
+
print(err)
|
632 |
traceback.print_exc()
|
633 |
+
stream.output_queue.push(('error', err))
|
634 |
stream.output_queue.push(('end', None))
|
635 |
return
|
636 |
|
637 |
+
# Sampling
|
638 |
last_update_time = time.time()
|
639 |
+
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling...'))))
|
640 |
|
641 |
rnd = torch.Generator("cpu").manual_seed(seed)
|
642 |
num_frames = latent_window_size * 4 - 3
|
643 |
|
644 |
try:
|
645 |
+
history_latents = torch.zeros(
|
646 |
+
size=(1, 16, 1 + 2 + 16, height // 8, width // 8),
|
647 |
+
dtype=torch.float32
|
648 |
+
).cpu()
|
649 |
history_pixels = None
|
650 |
total_generated_latent_frames = 0
|
651 |
except Exception as e:
|
652 |
+
err = f"Init history state error: {e}"
|
653 |
+
print(err)
|
654 |
traceback.print_exc()
|
655 |
+
stream.output_queue.push(('error', err))
|
656 |
stream.output_queue.push(('end', None))
|
657 |
return
|
658 |
|
659 |
+
latent_paddings = list(reversed(range(total_latent_sections)))
|
660 |
if total_latent_sections > 4:
|
661 |
+
# Some heuristic to flatten out large steps
|
662 |
latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0]
|
663 |
|
664 |
for latent_padding in latent_paddings:
|
665 |
last_update_time = time.time()
|
666 |
+
is_last_section = (latent_padding == 0)
|
667 |
latent_padding_size = latent_padding * latent_window_size
|
668 |
|
669 |
if stream.input_queue.top() == 'end':
|
670 |
+
# If user requests end, save partial video if possible
|
671 |
if history_pixels is not None and total_generated_latent_frames > 0:
|
672 |
try:
|
673 |
+
outname = os.path.join(
|
674 |
+
outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4'
|
675 |
+
)
|
676 |
+
save_bcthw_as_mp4(history_pixels, outname, fps=30)
|
677 |
+
stream.output_queue.push(('file', outname))
|
678 |
except Exception as e:
|
679 |
+
print(f"Error saving final partial video: {e}")
|
|
|
680 |
stream.output_queue.push(('end', None))
|
681 |
return
|
682 |
|
683 |
+
print(f"latent_padding_size={latent_padding_size}, last_section={is_last_section}")
|
684 |
|
685 |
try:
|
686 |
+
indices = torch.arange(
|
687 |
+
0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])
|
688 |
+
).unsqueeze(0)
|
689 |
+
(
|
690 |
+
clean_latent_indices_pre,
|
691 |
+
blank_indices,
|
692 |
+
latent_indices,
|
693 |
+
clean_latent_indices_post,
|
694 |
+
clean_latent_2x_indices,
|
695 |
+
clean_latent_4x_indices
|
696 |
+
) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
|
697 |
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
|
698 |
|
699 |
clean_latents_pre = start_latent.to(history_latents)
|
700 |
+
clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16].split([1, 2, 16], dim=2)
|
701 |
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
|
702 |
except Exception as e:
|
703 |
+
err = f"Sampling data prep error: {e}"
|
704 |
+
print(err)
|
705 |
traceback.print_exc()
|
706 |
if last_output_filename:
|
707 |
stream.output_queue.push(('file', last_output_filename))
|
|
|
710 |
if not high_vram and not cpu_fallback_mode:
|
711 |
try:
|
712 |
unload_complete_models()
|
713 |
+
move_model_to_device_with_memory_preservation(
|
714 |
+
transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation
|
715 |
+
)
|
716 |
except Exception as e:
|
717 |
+
print(f"Error moving transformer to GPU: {e}")
|
718 |
|
719 |
if use_teacache and not cpu_fallback_mode:
|
720 |
try:
|
721 |
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
722 |
except Exception as e:
|
723 |
+
print(f"Error init teacache: {e}")
|
724 |
transformer.initialize_teacache(enable_teacache=False)
|
725 |
else:
|
726 |
transformer.initialize_teacache(enable_teacache=False)
|
|
|
728 |
def callback(d):
|
729 |
global last_update_time
|
730 |
last_update_time = time.time()
|
|
|
731 |
try:
|
732 |
if stream.input_queue.top() == 'end':
|
733 |
stream.output_queue.push(('end', None))
|
734 |
+
raise KeyboardInterrupt('User requested stop.')
|
|
|
735 |
preview = d['denoised']
|
736 |
preview = vae_decode_fake(preview)
|
737 |
+
preview = (preview * 255.0).cpu().numpy().clip(0,255).astype(np.uint8)
|
|
|
738 |
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
739 |
|
740 |
+
curr_step = d['i'] + 1
|
741 |
+
percentage = int(100.0 * curr_step / steps)
|
742 |
+
hint = f'Sampling {curr_step}/{steps}'
|
743 |
+
desc = f'Total frames so far: {int(max(0, total_generated_latent_frames * 4 - 3))}'
|
744 |
+
barhtml = make_progress_bar_html(percentage, hint)
|
745 |
+
stream.output_queue.push(('progress', (preview, desc, barhtml)))
|
746 |
except KeyboardInterrupt:
|
747 |
raise
|
748 |
except Exception as e:
|
749 |
+
print(f"Callback error: {e}")
|
750 |
return
|
751 |
|
752 |
try:
|
753 |
+
print(f"Sampling with device={device}, dtype={transformer.dtype}, teacache={use_teacache}")
|
754 |
+
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
755 |
+
|
756 |
try:
|
757 |
generated_latents = sample_hunyuan(
|
758 |
transformer=transformer,
|
|
|
781 |
clean_latent_2x_indices=clean_latent_2x_indices,
|
782 |
clean_latents_4x=clean_latents_4x,
|
783 |
clean_latent_4x_indices=clean_latent_4x_indices,
|
784 |
+
callback=callback
|
785 |
)
|
|
|
|
|
786 |
except KeyboardInterrupt as e:
|
787 |
+
print(f"User interrupt: {e}")
|
788 |
if last_output_filename:
|
789 |
stream.output_queue.push(('file', last_output_filename))
|
790 |
+
err = "User stopped generation, partial video returned."
|
791 |
else:
|
792 |
+
err = "User stopped generation, no video produced."
|
793 |
+
stream.output_queue.push(('error', err))
|
|
|
794 |
stream.output_queue.push(('end', None))
|
795 |
return
|
796 |
except Exception as e:
|
797 |
+
print(f"Sampling error: {e}")
|
798 |
traceback.print_exc()
|
799 |
if last_output_filename:
|
800 |
stream.output_queue.push(('file', last_output_filename))
|
801 |
+
err = f"Error during sampling, partial video returned: {e}"
|
802 |
+
stream.output_queue.push(('error', err))
|
803 |
else:
|
804 |
+
err = f"Error during sampling, no video produced: {e}"
|
805 |
+
stream.output_queue.push(('error', err))
|
806 |
stream.output_queue.push(('end', None))
|
807 |
return
|
808 |
|
809 |
try:
|
810 |
if is_last_section:
|
811 |
generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
|
|
|
812 |
total_generated_latent_frames += int(generated_latents.shape[2])
|
813 |
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
814 |
except Exception as e:
|
815 |
+
err = f"Post-latent processing error: {e}"
|
816 |
+
print(err)
|
817 |
traceback.print_exc()
|
818 |
if last_output_filename:
|
819 |
stream.output_queue.push(('file', last_output_filename))
|
820 |
+
stream.output_queue.push(('error', err))
|
821 |
stream.output_queue.push(('end', None))
|
822 |
return
|
823 |
|
824 |
if not high_vram and not cpu_fallback_mode:
|
825 |
try:
|
826 |
+
offload_model_from_device_for_memory_preservation(
|
827 |
+
transformer, target_device=device, preserved_memory_gb=8
|
828 |
+
)
|
829 |
load_model_as_complete(vae, target_device=device)
|
830 |
except Exception as e:
|
831 |
+
print(f"Model memory manage error: {e}")
|
832 |
|
833 |
try:
|
834 |
+
real_history_latents = history_latents[:, :, :total_generated_latent_frames]
|
835 |
except Exception as e:
|
836 |
+
err = f"History latents slice error: {e}"
|
837 |
+
print(err)
|
838 |
if last_output_filename:
|
839 |
stream.output_queue.push(('file', last_output_filename))
|
840 |
continue
|
841 |
|
842 |
try:
|
843 |
+
# VAE decode
|
|
|
|
|
844 |
if history_pixels is None:
|
845 |
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
846 |
else:
|
847 |
+
# Overlap logic
|
848 |
+
section_latent_frames = (
|
849 |
+
(latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
|
850 |
+
)
|
851 |
overlapped_frames = latent_window_size * 4 - 3
|
|
|
852 |
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
|
853 |
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
|
854 |
+
|
855 |
+
output_filename = os.path.join(
|
856 |
+
outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4'
|
857 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
858 |
save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
|
|
|
|
|
|
|
|
|
859 |
last_output_filename = output_filename
|
860 |
stream.output_queue.push(('file', output_filename))
|
861 |
except Exception as e:
|
862 |
+
print(f"Video decode/save error: {e}")
|
863 |
traceback.print_exc()
|
864 |
if last_output_filename:
|
865 |
stream.output_queue.push(('file', last_output_filename))
|
866 |
+
err = f"Video decode/save error: {e}"
|
867 |
+
stream.output_queue.push(('error', err))
|
868 |
continue
|
869 |
|
870 |
if is_last_section:
|
871 |
break
|
872 |
except Exception as e:
|
873 |
+
print(f"Outer error: {e}, type={type(e)}")
|
874 |
traceback.print_exc()
|
|
|
|
|
|
|
|
|
875 |
if not high_vram and not cpu_fallback_mode:
|
876 |
try:
|
877 |
unload_complete_models(
|
878 |
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
879 |
)
|
880 |
+
except Exception as ue:
|
881 |
+
print(f"Unload error: {ue}")
|
882 |
+
|
883 |
if last_output_filename:
|
884 |
stream.output_queue.push(('file', last_output_filename))
|
885 |
+
err = f"Error in worker: {e}"
|
886 |
+
stream.output_queue.push(('error', err))
|
|
|
887 |
|
888 |
+
print("Worker finished, pushing 'end'.")
|
889 |
stream.output_queue.push(('end', None))
|
|
|
890 |
|
891 |
+
# 최종 처리 함수 (Spaces GPU decorator or normal)
|
892 |
if IN_HF_SPACE and 'spaces' in globals():
|
893 |
@spaces.GPU
|
894 |
+
def process_with_gpu(
|
895 |
+
input_image, prompt, n_prompt, seed,
|
896 |
+
total_second_length, latent_window_size, steps,
|
897 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
898 |
+
):
|
899 |
global stream
|
900 |
+
assert input_image is not None, "No input image given."
|
|
|
|
|
901 |
|
902 |
+
# Initialize UI state
|
903 |
+
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
|
904 |
try:
|
905 |
stream = AsyncStream()
|
906 |
+
async_run(
|
907 |
+
worker,
|
908 |
+
input_image, prompt, n_prompt, seed,
|
909 |
+
total_second_length, latent_window_size, steps, cfg, gs, rs,
|
910 |
+
gpu_memory_preservation, use_teacache
|
911 |
+
)
|
912 |
|
913 |
output_filename = None
|
914 |
prev_output_filename = None
|
|
|
917 |
while True:
|
918 |
try:
|
919 |
flag, data = stream.output_queue.next()
|
|
|
920 |
if flag == 'file':
|
921 |
output_filename = data
|
922 |
prev_output_filename = output_filename
|
923 |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
|
924 |
+
elif flag == 'progress':
|
|
|
925 |
preview, desc, html = data
|
926 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
927 |
+
elif flag == 'error':
|
|
|
928 |
error_message = data
|
929 |
+
print(f"Got error: {error_message}")
|
930 |
+
elif flag == 'end':
|
931 |
+
if output_filename is None and prev_output_filename:
|
|
|
932 |
output_filename = prev_output_filename
|
|
|
933 |
if error_message:
|
934 |
+
err_html = create_error_html(error_message)
|
935 |
+
yield (
|
936 |
+
output_filename, gr.update(visible=False), gr.update(),
|
937 |
+
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
938 |
+
)
|
939 |
else:
|
940 |
+
yield (
|
941 |
+
output_filename, gr.update(visible=False), gr.update(),
|
942 |
+
'', gr.update(interactive=True), gr.update(interactive=False)
|
943 |
+
)
|
944 |
break
|
945 |
except Exception as e:
|
946 |
+
print(f"Loop error: {e}")
|
947 |
+
if (time.time() - last_update_time) > 60:
|
948 |
+
print("No updates for 60 seconds, possible hang or timeout.")
|
|
|
949 |
if prev_output_filename:
|
950 |
+
err_html = create_error_html("partial video has been generated", is_timeout=True)
|
951 |
+
yield (
|
952 |
+
prev_output_filename, gr.update(visible=False), gr.update(),
|
953 |
+
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
954 |
+
)
|
955 |
else:
|
956 |
+
err_html = create_error_html(f"Processing timed out: {e}", is_timeout=True)
|
957 |
+
yield (
|
958 |
+
None, gr.update(visible=False), gr.update(),
|
959 |
+
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
960 |
+
)
|
961 |
break
|
962 |
except Exception as e:
|
963 |
+
print(f"Start process error: {e}")
|
964 |
traceback.print_exc()
|
965 |
+
err_html = create_error_html(str(e))
|
966 |
+
yield None, gr.update(visible=False), gr.update(), err_html, gr.update(interactive=True), gr.update(interactive=False)
|
967 |
+
|
|
|
|
|
968 |
process = process_with_gpu
|
969 |
else:
|
970 |
+
def process(
|
971 |
+
input_image, prompt, n_prompt, seed,
|
972 |
+
total_second_length, latent_window_size, steps,
|
973 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
974 |
+
):
|
975 |
global stream
|
976 |
+
assert input_image is not None, "No input image given."
|
|
|
|
|
977 |
|
978 |
+
yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
|
979 |
try:
|
980 |
stream = AsyncStream()
|
981 |
+
async_run(
|
982 |
+
worker,
|
983 |
+
input_image, prompt, n_prompt, seed,
|
984 |
+
total_second_length, latent_window_size, steps, cfg, gs, rs,
|
985 |
+
gpu_memory_preservation, use_teacache
|
986 |
+
)
|
987 |
|
988 |
output_filename = None
|
989 |
prev_output_filename = None
|
|
|
992 |
while True:
|
993 |
try:
|
994 |
flag, data = stream.output_queue.next()
|
|
|
995 |
if flag == 'file':
|
996 |
output_filename = data
|
997 |
prev_output_filename = output_filename
|
998 |
yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
|
999 |
+
elif flag == 'progress':
|
|
|
1000 |
preview, desc, html = data
|
1001 |
yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
1002 |
+
elif flag == 'error':
|
|
|
1003 |
error_message = data
|
1004 |
+
print(f"Got error: {error_message}")
|
1005 |
+
elif flag == 'end':
|
1006 |
+
if output_filename is None and prev_output_filename:
|
|
|
1007 |
output_filename = prev_output_filename
|
|
|
1008 |
if error_message:
|
1009 |
+
err_html = create_error_html(error_message)
|
1010 |
+
yield (
|
1011 |
+
output_filename, gr.update(visible=False), gr.update(),
|
1012 |
+
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
1013 |
+
)
|
1014 |
else:
|
1015 |
+
yield (
|
1016 |
+
output_filename, gr.update(visible=False), gr.update(),
|
1017 |
+
'', gr.update(interactive=True), gr.update(interactive=False)
|
1018 |
+
)
|
1019 |
break
|
1020 |
except Exception as e:
|
1021 |
+
print(f"Loop error: {e}")
|
1022 |
+
if (time.time() - last_update_time) > 60:
|
1023 |
+
print("No update for 60 seconds, possible hang or timeout.")
|
|
|
1024 |
if prev_output_filename:
|
1025 |
+
err_html = create_error_html("partial video has been generated", is_timeout=True)
|
1026 |
+
yield (
|
1027 |
+
prev_output_filename, gr.update(visible=False), gr.update(),
|
1028 |
+
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
1029 |
+
)
|
1030 |
else:
|
1031 |
+
err_html = create_error_html(f"Processing timed out: {e}", is_timeout=True)
|
1032 |
+
yield (
|
1033 |
+
None, gr.update(visible=False), gr.update(),
|
1034 |
+
err_html, gr.update(interactive=True), gr.update(interactive=False)
|
1035 |
+
)
|
1036 |
break
|
1037 |
except Exception as e:
|
1038 |
+
print(f"Start process error: {e}")
|
1039 |
traceback.print_exc()
|
1040 |
+
err_html = create_error_html(str(e))
|
1041 |
+
yield None, gr.update(visible=False), gr.update(), err_html, gr.update(interactive=True), gr.update(interactive=False)
|
|
|
|
|
1042 |
|
1043 |
def end_process():
|
1044 |
+
"""
|
1045 |
+
Stop generation by pushing 'end' to the worker queue
|
1046 |
+
"""
|
1047 |
+
print("User clicked stop, sending 'end' signal...")
|
1048 |
+
global stream
|
1049 |
if 'stream' in globals() and stream is not None:
|
1050 |
try:
|
1051 |
+
top_signal = stream.input_queue.top()
|
1052 |
+
print(f"Queue top signal = {top_signal}")
|
1053 |
except Exception as e:
|
1054 |
+
print(f"Error checking queue top: {e}")
|
1055 |
try:
|
1056 |
stream.input_queue.push('end')
|
1057 |
+
print("Pushed 'end' successfully.")
|
|
|
|
|
|
|
|
|
|
|
1058 |
except Exception as e:
|
1059 |
+
print(f"Error pushing 'end': {e}")
|
1060 |
else:
|
1061 |
+
print("Warning: Stream not initialized, cannot stop.")
|
1062 |
return None
|
1063 |
|
1064 |
+
# 예시 빠른 프롬프트
|
1065 |
quick_prompts = [
|
1066 |
+
["The girl dances gracefully, with clear movements, full of charm."],
|
1067 |
+
["A character doing some simple body movements."]
|
1068 |
]
|
|
|
1069 |
|
1070 |
+
# CSS
|
1071 |
def make_custom_css():
|
1072 |
+
base_progress_css = make_progress_bar_css()
|
1073 |
+
enhanced_css = """
|
1074 |
+
/* Visual & layout improvement */
|
1075 |
+
body {
|
1076 |
+
background: #f9fafb !important;
|
1077 |
+
font-family: "Noto Sans", sans-serif;
|
1078 |
+
}
|
1079 |
#app-container {
|
1080 |
+
max-width: 1200px;
|
1081 |
margin: 0 auto;
|
1082 |
+
padding: 1rem;
|
1083 |
+
position: relative;
|
1084 |
}
|
1085 |
+
#app-container h1 {
|
1086 |
+
color: #2d3748;
|
1087 |
+
margin-bottom: 1.2rem;
|
1088 |
+
font-weight: 700;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1089 |
}
|
1090 |
+
.gr-panel {
|
1091 |
+
background: #fff;
|
1092 |
+
border: 1px solid #cbd5e0;
|
1093 |
+
border-radius: 8px;
|
1094 |
+
padding: 1rem;
|
1095 |
+
box-shadow: 0 1px 2px rgba(0,0,0,0.1);
|
1096 |
}
|
1097 |
+
.button-container button {
|
|
|
1098 |
min-height: 45px;
|
1099 |
font-size: 1rem;
|
1100 |
+
font-weight: 600;
|
1101 |
}
|
1102 |
+
.button-container button#start-button {
|
1103 |
+
background-color: #3182ce !important;
|
1104 |
+
color: #fff !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1105 |
}
|
1106 |
+
.button-container button#stop-button {
|
1107 |
+
background-color: #e53e3e !important;
|
1108 |
+
color: #fff !important;
|
|
|
|
|
1109 |
}
|
1110 |
+
.button-container button:hover {
|
1111 |
+
filter: brightness(0.95);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1112 |
}
|
1113 |
+
.preview-container, .video-container {
|
1114 |
+
border: 1px solid #cbd5e0;
|
1115 |
+
border-radius: 8px;
|
1116 |
+
overflow: hidden;
|
1117 |
}
|
|
|
1118 |
.progress-container {
|
1119 |
+
margin-top: 15px;
|
1120 |
+
margin-bottom: 15px;
|
1121 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1122 |
.error-message {
|
1123 |
+
background-color: #fff5f5;
|
1124 |
+
border: 1px solid #fed7d7;
|
1125 |
+
color: #e53e3e;
|
1126 |
padding: 10px;
|
1127 |
border-radius: 4px;
|
1128 |
margin-top: 10px;
|
|
|
1129 |
}
|
|
|
|
|
|
|
|
|
|
|
1130 |
.error-icon {
|
1131 |
+
color: #e53e3e;
|
|
|
1132 |
margin-right: 8px;
|
1133 |
}
|
1134 |
+
#error-message {
|
1135 |
+
color: #ff4444;
|
1136 |
+
font-weight: bold;
|
1137 |
+
padding: 10px;
|
1138 |
+
border-radius: 4px;
|
1139 |
+
margin-top: 10px;
|
1140 |
}
|
1141 |
+
@media (max-width: 768px) {
|
1142 |
+
#app-container {
|
1143 |
+
padding: 0.5rem;
|
1144 |
+
}
|
1145 |
+
.mobile-full-width {
|
1146 |
+
flex-direction: column !important;
|
1147 |
+
}
|
1148 |
+
.mobile-full-width > .gr-block {
|
1149 |
+
width: 100% !important;
|
1150 |
+
}
|
1151 |
}
|
1152 |
"""
|
1153 |
+
return base_progress_css + enhanced_css
|
|
|
1154 |
|
1155 |
css = make_custom_css()
|
1156 |
+
|
1157 |
+
# Gradio UI
|
1158 |
block = gr.Blocks(css=css).queue()
|
1159 |
with block:
|
1160 |
+
# 상단 제목
|
1161 |
+
gr.HTML("<div id='app-container'><h1>FramePack - Image to Video Generation</h1></div>")
|
1162 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1163 |
with gr.Row(elem_classes="mobile-full-width"):
|
1164 |
+
with gr.Column(scale=1, elem_classes="gr-panel"):
|
1165 |
input_image = gr.Image(
|
1166 |
+
label="Upload Image",
|
1167 |
+
sources='upload',
|
1168 |
+
type="numpy",
|
1169 |
elem_id="input-image",
|
1170 |
height=320
|
1171 |
)
|
1172 |
+
prompt = gr.Textbox(label="Prompt", value='', elem_id="prompt-input")
|
1173 |
+
|
|
|
|
|
|
|
|
|
|
|
1174 |
example_quick_prompts = gr.Dataset(
|
1175 |
+
samples=quick_prompts,
|
1176 |
+
label="Quick Prompts",
|
1177 |
+
samples_per_page=1000,
|
1178 |
components=[prompt]
|
1179 |
)
|
1180 |
example_quick_prompts.click(
|
1181 |
+
fn=lambda x: x[0],
|
1182 |
+
inputs=[example_quick_prompts],
|
1183 |
+
outputs=prompt,
|
1184 |
+
show_progress=False,
|
1185 |
queue=False
|
1186 |
)
|
1187 |
+
with gr.Column(scale=1, elem_classes="gr-panel"):
|
1188 |
with gr.Row(elem_classes="button-container"):
|
1189 |
start_button = gr.Button(
|
1190 |
+
value="Generate",
|
|
|
1191 |
elem_id="start-button",
|
1192 |
variant="primary"
|
1193 |
)
|
|
|
1194 |
end_button = gr.Button(
|
1195 |
+
value="Stop",
|
|
|
1196 |
elem_id="stop-button",
|
1197 |
interactive=False
|
1198 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1199 |
|
1200 |
result_video = gr.Video(
|
1201 |
+
label="Generated Video",
|
1202 |
+
autoplay=True,
|
|
|
|
|
1203 |
loop=True,
|
1204 |
+
height=320,
|
1205 |
elem_classes="video-container",
|
1206 |
elem_id="result-video"
|
1207 |
)
|
1208 |
+
preview_image = gr.Image(
|
1209 |
+
label="Preview",
|
1210 |
+
visible=False,
|
1211 |
+
height=150,
|
1212 |
+
elem_classes="preview-container"
|
1213 |
+
)
|
1214 |
+
|
1215 |
+
gr.Markdown(get_translation("sampling_note"))
|
1216 |
|
1217 |
with gr.Group(elem_classes="progress-container"):
|
1218 |
+
progress_desc = gr.Markdown('')
|
1219 |
+
progress_bar = gr.HTML('')
|
1220 |
|
1221 |
error_message = gr.HTML('', elem_id='error-message', visible=True)
|
|
|
|
|
1222 |
|
1223 |
+
# 고급 파라미터 Accordion
|
1224 |
+
with gr.Accordion("Advanced Settings", open=False, elem_classes="gr-panel"):
|
1225 |
+
use_teacache = gr.Checkbox(
|
1226 |
+
label=get_translation("use_teacache"),
|
1227 |
+
value=True,
|
1228 |
+
info=get_translation("teacache_info")
|
1229 |
+
)
|
1230 |
+
n_prompt = gr.Textbox(label=get_translation("negative_prompt"), value="", visible=False)
|
1231 |
+
seed = gr.Number(
|
1232 |
+
label=get_translation("seed"),
|
1233 |
+
value=31337,
|
1234 |
+
precision=0
|
1235 |
+
)
|
1236 |
+
total_second_length = gr.Slider(
|
1237 |
+
label=get_translation("video_length"),
|
1238 |
+
minimum=1,
|
1239 |
+
maximum=5,
|
1240 |
+
value=5,
|
1241 |
+
step=0.1
|
1242 |
+
)
|
1243 |
+
latent_window_size = gr.Slider(
|
1244 |
+
label=get_translation("latent_window"),
|
1245 |
+
minimum=1,
|
1246 |
+
maximum=33,
|
1247 |
+
value=9,
|
1248 |
+
step=1,
|
1249 |
+
visible=False
|
1250 |
+
)
|
1251 |
+
steps = gr.Slider(
|
1252 |
+
label=get_translation("steps"),
|
1253 |
+
minimum=1,
|
1254 |
+
maximum=100,
|
1255 |
+
value=25,
|
1256 |
+
step=1,
|
1257 |
+
info=get_translation("steps_info")
|
1258 |
+
)
|
1259 |
+
cfg = gr.Slider(
|
1260 |
+
label=get_translation("cfg_scale"),
|
1261 |
+
minimum=1.0,
|
1262 |
+
maximum=32.0,
|
1263 |
+
value=1.0,
|
1264 |
+
step=0.01,
|
1265 |
+
visible=False
|
1266 |
+
)
|
1267 |
+
gs = gr.Slider(
|
1268 |
+
label=get_translation("distilled_cfg"),
|
1269 |
+
minimum=1.0,
|
1270 |
+
maximum=32.0,
|
1271 |
+
value=10.0,
|
1272 |
+
step=0.01,
|
1273 |
+
info=get_translation("distilled_cfg_info")
|
1274 |
+
)
|
1275 |
+
rs = gr.Slider(
|
1276 |
+
label=get_translation("cfg_rescale"),
|
1277 |
+
minimum=0.0,
|
1278 |
+
maximum=1.0,
|
1279 |
+
value=0.0,
|
1280 |
+
step=0.01,
|
1281 |
+
visible=False
|
1282 |
+
)
|
1283 |
+
gpu_memory_preservation = gr.Slider(
|
1284 |
+
label=get_translation("gpu_memory"),
|
1285 |
+
minimum=6,
|
1286 |
+
maximum=128,
|
1287 |
+
value=6,
|
1288 |
+
step=0.1,
|
1289 |
+
info=get_translation("gpu_memory_info")
|
1290 |
+
)
|
1291 |
+
|
1292 |
+
# 처리 함수 연결
|
1293 |
+
ips = [
|
1294 |
+
input_image, prompt, n_prompt, seed,
|
1295 |
+
total_second_length, latent_window_size, steps,
|
1296 |
+
cfg, gs, rs, gpu_memory_preservation, use_teacache
|
1297 |
+
]
|
1298 |
+
start_button.click(
|
1299 |
+
fn=process,
|
1300 |
+
inputs=ips,
|
1301 |
+
outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]
|
1302 |
+
)
|
1303 |
end_button.click(fn=end_process)
|
1304 |
|
1305 |
block.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|