ginipick commited on
Commit
5cdef45
·
verified ·
1 Parent(s): 17a13c7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +653 -805
app.py CHANGED
@@ -8,9 +8,11 @@ from requests.adapters import HTTPAdapter
8
  from urllib3.util.retry import Retry
9
  import json
10
 
11
- os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
 
 
12
 
13
- # 영어/한국어 번역 딕셔너리
14
  translations = {
15
  "en": {
16
  "title": "FramePack - Image to Video Generation",
@@ -43,57 +45,16 @@ translations = {
43
  "model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
44
  "partial_video": "Processing error, but partial video has been generated",
45
  "processing_interrupt": "Processing was interrupted, but partial video has been generated"
46
- },
47
- "ko": {
48
- "title": "FramePack - 이미지에서 동영상 생성",
49
- "upload_image": "이미지 업로드",
50
- "prompt": "프롬프트",
51
- "quick_prompts": "빠른 프롬프트 목록",
52
- "start_generation": "생성 시작",
53
- "stop_generation": "생성 중지",
54
- "use_teacache": "TeaCache 사용",
55
- "teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.",
56
- "negative_prompt": "부정 프롬프트",
57
- "seed": "랜덤 시드",
58
- "video_length": "동영상 길이 (최대 5초)",
59
- "latent_window": "잠재 윈도우 크기",
60
- "steps": "추론 스텝 수",
61
- "steps_info": "이 값을 변경하는 것은 권장되지 않습니다.",
62
- "cfg_scale": "CFG 스케일",
63
- "distilled_cfg": "증류된 CFG 스케일",
64
- "distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.",
65
- "cfg_rescale": "CFG 재스케일",
66
- "gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)",
67
- "gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.",
68
- "next_latents": "다음 잠재 변수",
69
- "generated_video": "생성된 동영상",
70
- "sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 동영상에 나타나지 않으면 기다려 주십시오. 나중에 생성됩니다.",
71
- "error_message": "오류 메시지",
72
- "processing_error": "처리 중 오류 발생",
73
- "network_error": "네트워크 연결이 불안정하여 모델 다운로드가 시간 초과되었습니다. 나중에 다시 시도해 주십시오.",
74
- "memory_error": "GPU 메모리가 부족합니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요.",
75
- "model_error": "모델 로드에 실패했습니다. 네트워크 문제 또는 서버 부하가 높을 수 있습니다. 나중에 다시 시도해 주십시오.",
76
- "partial_video": "처리 중 오류가 발생했지만 일부 동영상이 생성되었습니다.",
77
- "processing_interrupt": "처리 중 중단되었지만 일부 동영상이 생성되었습니다."
78
  }
79
  }
80
 
81
- # 다국어 텍스트를 반환하는 함수
82
- def get_translation(key, lang="en"):
83
- if lang in translations and key in translations[lang]:
84
- return translations[lang][key]
85
- # 기본값(영어) 반환
86
  return translations["en"].get(key, key)
87
 
88
- # 디폴트 언어를 영어로 설정
89
  current_language = "en"
90
 
91
- # 언어 전환 함수
92
- def switch_language():
93
- global current_language
94
- current_language = "ko" if current_language == "en" else "en"
95
- return current_language
96
-
97
  import gradio as gr
98
  import torch
99
  import traceback
@@ -102,148 +63,219 @@ import safetensors.torch as sf
102
  import numpy as np
103
  import math
104
 
105
- # Spaces 환경 체크
106
  IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
107
 
108
- # GPU 사용 여부 기록
109
  GPU_AVAILABLE = False
110
  GPU_INITIALIZED = False
111
  last_update_time = time.time()
112
 
113
- # Spaces 환경이라면, spaces 모듈 불러오기 시도
114
  if IN_HF_SPACE:
115
  try:
116
  import spaces
117
- print("Hugging Face Space 환경에서 실행 중, spaces 모듈을 불러왔습니다.")
118
-
119
- # GPU 사용 가능 여부 확인
120
  try:
121
  GPU_AVAILABLE = torch.cuda.is_available()
122
  print(f"GPU available: {GPU_AVAILABLE}")
123
  if GPU_AVAILABLE:
124
- print(f"GPU device name: {torch.cuda.get_device_name(0)}")
125
- print(f"GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9} GB")
126
-
127
- # 작은 테스트 연산으로 실제 GPU 동작 확인
128
- test_tensor = torch.zeros(1, device='cuda')
129
- test_tensor = test_tensor + 1
130
  del test_tensor
131
- print("GPU 테스트 연산 성공")
132
- else:
133
- print("경고: CUDA는 가능하다고 하나 실제 GPU 디바이스를 찾을 수 없습니다.")
134
  except Exception as e:
135
  GPU_AVAILABLE = False
136
- print(f"GPU 확인 오류 발생: {e}")
137
- print("CPU 모드로 진행합니다.")
138
  except ImportError:
139
- print("spaces 모듈을 불러올 수 없습니다. Spaces 환경이 아닐 수 있습니다.")
140
  GPU_AVAILABLE = torch.cuda.is_available()
141
 
142
  from PIL import Image
143
  from diffusers import AutoencoderKLHunyuanVideo
144
- from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
145
- from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
146
- from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
147
  from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
148
  from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
149
- from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete, IN_HF_SPACE as MEMORY_IN_HF_SPACE
 
 
 
 
 
 
 
 
 
 
 
150
  from diffusers_helper.thread_utils import AsyncStream, async_run
151
- from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
152
- from transformers import SiglipImageProcessor, SiglipVisionModel
153
  from diffusers_helper.clip_vision import hf_clip_vision_encode
154
- from diffusers_helper.bucket_tools import find_nearest_bucket
 
 
 
155
 
156
  outputs_folder = './outputs/'
157
  os.makedirs(outputs_folder, exist_ok=True)
158
 
159
- # Spaces 환경이 아닐 경우, VRAM 확인
160
  if not IN_HF_SPACE:
161
  try:
162
  if torch.cuda.is_available():
163
  free_mem_gb = get_cuda_free_memory_gb(gpu)
164
- print(f'남은 VRAM: {free_mem_gb} GB')
165
  else:
166
- free_mem_gb = 6.0 # 기본값
167
- print("CUDA 사용할 없으므로 기본 메모리 설정을 사용합니다.")
168
  except Exception as e:
169
  free_mem_gb = 6.0
170
- print(f"CUDA 메모리 확인 오류 발생: {e} / 기본값 사용")
171
-
172
  high_vram = free_mem_gb > 60
173
- print(f'high_vram 모드: {high_vram}')
174
  else:
175
- # Spaces 환경에서 기본값 설정
176
- print("Spaces 환경에서 기본 메모리 설정 사용")
177
  try:
178
  if GPU_AVAILABLE:
179
  free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9
180
- high_vram = free_mem_gb > 10 # 조금 더 보수적으로 설정
181
  else:
182
  free_mem_gb = 6.0
183
  high_vram = False
184
  except Exception as e:
185
- print(f"GPU 메모리 확인 중 오류: {e}")
186
  free_mem_gb = 6.0
187
  high_vram = False
188
-
189
- print(f'GPU 메모리: {free_mem_gb:.2f} GB, High-VRAM 모드: {high_vram}')
190
 
191
- # 전역 모델 참조
192
  models = {}
193
- cpu_fallback_mode = not GPU_AVAILABLE # GPU가 불가능하면 CPU 모드로
194
 
195
  def load_models():
 
 
 
196
  global models, cpu_fallback_mode, GPU_INITIALIZED
197
 
198
  if GPU_INITIALIZED:
199
- print("모델이 이미 로드되었습니다. 다시 로드하지 않습니다.")
200
  return models
201
-
202
- print("모델 로드를 시작합니다...")
203
 
204
  try:
205
  device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
206
- model_device = 'cpu' # 우선 CPU에 로드
207
-
208
- # 기본적으로 GPU면 float16, CPU면 float32
209
  dtype = torch.float16 if GPU_AVAILABLE else torch.float32
210
  transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
211
-
212
- print(f"사용 디바이스: {device}, vae/text encoder dtype: {dtype}, transformer dtype: {transformer_dtype}")
213
-
214
- try:
215
- text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to(model_device)
216
- text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to(model_device)
217
- tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
218
- tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
219
- vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to(model_device)
220
 
221
- feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
222
- image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to(model_device)
223
 
224
- transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to(model_device)
225
-
226
- print("모든 모델을 성공적으로 로드했습니다.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227
  except Exception as e:
228
- print(f"모델 로드 오류 발생: {e}")
229
- print("정밀도를 낮춰 다시 로드합니다...")
230
-
231
  dtype = torch.float32
232
  transformer_dtype = torch.float32
233
  cpu_fallback_mode = True
234
-
235
- text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=dtype).to('cpu')
236
- text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=dtype).to('cpu')
237
- tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
238
- tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
239
- vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=dtype).to('cpu')
240
 
241
- feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
242
- image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=dtype).to('cpu')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243
 
244
- transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=transformer_dtype).to('cpu')
245
-
246
- print("CPU 모드로 모델 로드 성공")
 
 
 
247
 
248
  vae.eval()
249
  text_encoder.eval()
@@ -256,7 +288,7 @@ def load_models():
256
  vae.enable_tiling()
257
 
258
  transformer.high_quality_fp32_output_for_inference = True
259
- print('transformer.high_quality_fp32_output_for_inference = True')
260
 
261
  if not cpu_fallback_mode:
262
  transformer.to(dtype=transformer_dtype)
@@ -274,7 +306,6 @@ def load_models():
274
  if torch.cuda.is_available() and not cpu_fallback_mode:
275
  try:
276
  if not high_vram:
277
- # 메모리 최적화
278
  DynamicSwapInstaller.install_model(transformer, device=device)
279
  DynamicSwapInstaller.install_model(text_encoder, device=device)
280
  else:
@@ -283,10 +314,9 @@ def load_models():
283
  image_encoder.to(device)
284
  vae.to(device)
285
  transformer.to(device)
286
- print(f"모델을 {device}로 이동 완료")
287
  except Exception as e:
288
- print(f"{device}로 모델 이동 오류 발생: {e}")
289
- print("CPU 모드로 전환")
290
  cpu_fallback_mode = True
291
 
292
  models_local = {
@@ -299,116 +329,156 @@ def load_models():
299
  'image_encoder': image_encoder,
300
  'transformer': transformer
301
  }
302
-
303
  GPU_INITIALIZED = True
304
  models.update(models_local)
305
- print(f"모델 로드 완료. 현재 실행 모드: {'CPU' if cpu_fallback_mode else 'GPU'}")
306
  return models
307
  except Exception as e:
308
- print(f"모델 로드 예상치 못한 오류가 발생: {e}")
309
  traceback.print_exc()
310
-
311
- error_info = {
312
- "error": str(e),
313
- "traceback": traceback.format_exc(),
314
- "cuda_available": torch.cuda.is_available(),
315
- "device": "cpu" if cpu_fallback_mode else "cuda",
316
- }
317
-
318
- try:
319
- with open(os.path.join(outputs_folder, "error_log.txt"), "w") as f:
320
- f.write(str(error_info))
321
- except:
322
- pass
323
-
324
  cpu_fallback_mode = True
325
  return {}
326
 
 
327
  if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
328
  try:
329
  @spaces.GPU
330
  def initialize_models():
331
- """@spaces.GPU 환경에서 모델을 초기화"""
332
  global GPU_INITIALIZED
333
  try:
334
  result = load_models()
335
  GPU_INITIALIZED = True
336
  return result
337
  except Exception as e:
338
- print(f"@spaces.GPU 모델 초기화 중 오류: {e}")
339
- traceback.print_exc()
340
  global cpu_fallback_mode
341
  cpu_fallback_mode = True
342
  return load_models()
343
  except Exception as e:
344
- print(f"spaces.GPU 데코레이터 생성 중 오류: {e}")
345
  def initialize_models():
346
  return load_models()
 
 
 
347
 
348
  def get_models():
349
- """모델을 불러오거나 이미 불러왔다면 반환"""
350
- global models, GPU_INITIALIZED
351
-
 
352
  model_loading_key = "__model_loading__"
353
-
354
  if not models:
355
  if model_loading_key in globals():
356
- print("모델 로딩 중입니다. 대기 중...")
357
  import time
358
  start_wait = time.time()
359
- while not models and model_loading_key in globals():
360
  time.sleep(0.5)
361
  if time.time() - start_wait > 60:
362
- print("모델 로딩 대기 시간 초과")
363
  break
364
-
365
  if models:
366
  return models
367
-
368
  try:
369
  globals()[model_loading_key] = True
370
-
371
  if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
372
  try:
373
- print("GPU 데코레이터(@spaces.GPU)로 모델 로딩 시도")
374
  models_local = initialize_models()
375
  models.update(models_local)
376
  except Exception as e:
377
- print(f"GPU 데코레이터 로딩 실패: {e} / 직접 로딩 시도")
378
  models_local = load_models()
379
  models.update(models_local)
380
  else:
381
- print("모델 직접 로딩 시도")
382
  models_local = load_models()
383
  models.update(models_local)
384
  except Exception as e:
385
- print(f"모델 로드 오류: {e}")
386
- traceback.print_exc()
387
  models.clear()
388
  finally:
389
  if model_loading_key in globals():
390
  del globals()[model_loading_key]
391
-
392
  return models
393
 
394
  stream = AsyncStream()
395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
396
  @torch.no_grad()
397
- def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
398
  global last_update_time
399
  last_update_time = time.time()
400
-
401
  total_second_length = min(total_second_length, 5.0)
402
-
403
  try:
404
  models_local = get_models()
405
  if not models_local:
406
- error_msg = "모델 로드에 실패했습니다. 로그를 확인하세요."
407
  print(error_msg)
408
  stream.output_queue.push(('error', error_msg))
409
  stream.output_queue.push(('end', None))
410
  return
411
-
412
  text_encoder = models_local['text_encoder']
413
  text_encoder_2 = models_local['text_encoder_2']
414
  tokenizer = models_local['tokenizer']
@@ -418,22 +488,22 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
418
  image_encoder = models_local['image_encoder']
419
  transformer = models_local['transformer']
420
  except Exception as e:
421
- error_msg = f"모델 가져오기 실패: {e}"
422
- print(error_msg)
423
  traceback.print_exc()
424
- stream.output_queue.push(('error', error_msg))
425
  stream.output_queue.push(('end', None))
426
  return
427
-
428
- device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
429
- print(f"추론 디바이스: {device}")
430
 
431
  if cpu_fallback_mode:
432
- print("CPU 모드에서 일부 파라미터를 축소합니다.")
433
  latent_window_size = min(latent_window_size, 5)
434
  steps = min(steps, 15)
435
  total_second_length = min(total_second_length, 2.0)
436
-
437
  total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
438
  total_latent_sections = int(max(round(total_latent_sections), 1))
439
 
@@ -443,6 +513,8 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
443
  history_latents = None
444
  total_generated_latent_frames = 0
445
 
 
 
446
  stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
447
 
448
  try:
@@ -452,95 +524,102 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
452
  text_encoder, text_encoder_2, image_encoder, vae, transformer
453
  )
454
  except Exception as e:
455
- print(f"모델 언로드 오류: {e}")
456
-
457
- # 텍스트 인코딩
458
  last_update_time = time.time()
459
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
460
 
461
  try:
462
  if not high_vram and not cpu_fallback_mode:
463
  fake_diffusers_current_device(text_encoder, device)
464
  load_model_as_complete(text_encoder_2, target_device=device)
465
 
466
- llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
 
 
467
 
468
  if cfg == 1:
469
- llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
 
 
 
470
  else:
471
- llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
 
 
472
 
473
  llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
474
  llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
475
  except Exception as e:
476
- error_msg = f"텍스트 인코딩 오류: {e}"
477
- print(error_msg)
478
  traceback.print_exc()
479
- stream.output_queue.push(('error', error_msg))
480
  stream.output_queue.push(('end', None))
481
  return
482
 
483
- # 입력 이미지 처리
484
  last_update_time = time.time()
485
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing ...'))))
486
 
487
  try:
488
  H, W, C = input_image.shape
489
  height, width = find_nearest_bucket(H, W, resolution=640)
490
-
491
  if cpu_fallback_mode:
492
  height = min(height, 320)
493
  width = min(width, 320)
494
-
495
  input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
496
  Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
497
 
498
  input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
499
  input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
500
  except Exception as e:
501
- error_msg = f"이미지 전처리 오류: {e}"
502
- print(error_msg)
503
  traceback.print_exc()
504
- stream.output_queue.push(('error', error_msg))
505
  stream.output_queue.push(('end', None))
506
  return
507
 
508
- # VAE 인코딩
509
  last_update_time = time.time()
510
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding ...'))))
511
 
512
  try:
513
  if not high_vram and not cpu_fallback_mode:
514
  load_model_as_complete(vae, target_device=device)
515
-
516
  start_latent = vae_encode(input_image_pt, vae)
517
  except Exception as e:
518
- error_msg = f"VAE 인코딩 오류: {e}"
519
- print(error_msg)
520
  traceback.print_exc()
521
- stream.output_queue.push(('error', error_msg))
522
  stream.output_queue.push(('end', None))
523
  return
524
 
525
- # CLIP Vision 인코딩
526
  last_update_time = time.time()
527
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
528
 
529
  try:
530
  if not high_vram and not cpu_fallback_mode:
531
  load_model_as_complete(image_encoder, target_device=device)
532
-
533
- image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
 
534
  image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
535
  except Exception as e:
536
- error_msg = f"CLIP Vision 인코딩 오류: {e}"
537
- print(error_msg)
538
  traceback.print_exc()
539
- stream.output_queue.push(('error', error_msg))
540
  stream.output_queue.push(('end', None))
541
  return
542
 
543
- # dtype 변환
544
  try:
545
  llama_vec = llama_vec.to(transformer.dtype)
546
  llama_vec_n = llama_vec_n.to(transformer.dtype)
@@ -548,67 +627,81 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
548
  clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
549
  image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
550
  except Exception as e:
551
- error_msg = f"dtype 변환 오류: {e}"
552
- print(error_msg)
553
  traceback.print_exc()
554
- stream.output_queue.push(('error', error_msg))
555
  stream.output_queue.push(('end', None))
556
  return
557
 
558
- # 샘플링 진행
559
  last_update_time = time.time()
560
- stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
561
 
562
  rnd = torch.Generator("cpu").manual_seed(seed)
563
  num_frames = latent_window_size * 4 - 3
564
 
565
  try:
566
- history_latents = torch.zeros(size=(1, 16, 1 + 2 + 16, height // 8, width // 8), dtype=torch.float32).cpu()
 
 
 
567
  history_pixels = None
568
  total_generated_latent_frames = 0
569
  except Exception as e:
570
- error_msg = f"히스토리 상태 초기화 오류: {e}"
571
- print(error_msg)
572
  traceback.print_exc()
573
- stream.output_queue.push(('error', error_msg))
574
  stream.output_queue.push(('end', None))
575
  return
576
 
577
- latent_paddings = reversed(range(total_latent_sections))
578
  if total_latent_sections > 4:
 
579
  latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0]
580
 
581
  for latent_padding in latent_paddings:
582
  last_update_time = time.time()
583
- is_last_section = latent_padding == 0
584
  latent_padding_size = latent_padding * latent_window_size
585
 
586
  if stream.input_queue.top() == 'end':
587
- # 중단 신호 수신 부분 결과 반환
588
  if history_pixels is not None and total_generated_latent_frames > 0:
589
  try:
590
- output_filename = os.path.join(outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4')
591
- save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
592
- stream.output_queue.push(('file', output_filename))
 
 
593
  except Exception as e:
594
- print(f"마지막 비디오 저장 오류: {e}")
595
-
596
  stream.output_queue.push(('end', None))
597
  return
598
 
599
- print(f'latent_padding_size = {latent_padding_size}, is_last_section = {is_last_section}')
600
 
601
  try:
602
- indices = torch.arange(0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])).unsqueeze(0)
603
- clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
 
 
 
 
 
 
 
 
 
604
  clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
605
 
606
  clean_latents_pre = start_latent.to(history_latents)
607
- clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16, :, :].split([1, 2, 16], dim=2)
608
  clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
609
  except Exception as e:
610
- error_msg = f"샘플링 데이터 준비 오류: {e}"
611
- print(error_msg)
612
  traceback.print_exc()
613
  if last_output_filename:
614
  stream.output_queue.push(('file', last_output_filename))
@@ -617,15 +710,17 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
617
  if not high_vram and not cpu_fallback_mode:
618
  try:
619
  unload_complete_models()
620
- move_model_to_device_with_memory_preservation(transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation)
 
 
621
  except Exception as e:
622
- print(f"transformer GPU 이동 오류: {e}")
623
 
624
  if use_teacache and not cpu_fallback_mode:
625
  try:
626
  transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
627
  except Exception as e:
628
- print(f"teacache 초기화 오류: {e}")
629
  transformer.initialize_teacache(enable_teacache=False)
630
  else:
631
  transformer.initialize_teacache(enable_teacache=False)
@@ -633,33 +728,31 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
633
  def callback(d):
634
  global last_update_time
635
  last_update_time = time.time()
636
-
637
  try:
638
  if stream.input_queue.top() == 'end':
639
  stream.output_queue.push(('end', None))
640
- raise KeyboardInterrupt('사용자 중단 요청')
641
-
642
  preview = d['denoised']
643
  preview = vae_decode_fake(preview)
644
-
645
- preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
646
  preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
647
 
648
- current_step = d['i'] + 1
649
- percentage = int(100.0 * current_step / steps)
650
- hint = f'Sampling {current_step}/{steps}'
651
- desc = f'Total generated frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / 30) :.2f} seconds (FPS-30).'
652
- stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
 
653
  except KeyboardInterrupt:
654
  raise
655
  except Exception as e:
656
- print(f"콜백 오류: {e}")
657
  return
658
 
659
  try:
660
- sampling_start_time = time.time()
661
- print(f"샘플링 시작, device: {device}, dtype: {transformer.dtype}, TeaCache: {use_teacache and not cpu_fallback_mode}")
662
-
663
  try:
664
  generated_latents = sample_hunyuan(
665
  transformer=transformer,
@@ -688,144 +781,134 @@ def worker(input_image, prompt, n_prompt, seed, total_second_length, latent_wind
688
  clean_latent_2x_indices=clean_latent_2x_indices,
689
  clean_latents_4x=clean_latents_4x,
690
  clean_latent_4x_indices=clean_latent_4x_indices,
691
- callback=callback,
692
  )
693
-
694
- print(f"샘플링 완료. 소요 시간: {time.time() - sampling_start_time:.2f} 초")
695
  except KeyboardInterrupt as e:
696
- print(f"사용자 중단: {e}")
697
  if last_output_filename:
698
  stream.output_queue.push(('file', last_output_filename))
699
- error_msg = "사용자에 의해 중단되었지만, 일부 비디오가 생성되었습니다."
700
  else:
701
- error_msg = "사용자에 의해 중단되었습니다. 비디오가 생성되지 않았습니다."
702
-
703
- stream.output_queue.push(('error', error_msg))
704
  stream.output_queue.push(('end', None))
705
  return
706
  except Exception as e:
707
- print(f"샘플링 오류: {e}")
708
  traceback.print_exc()
709
  if last_output_filename:
710
  stream.output_queue.push(('file', last_output_filename))
711
- error_msg = f"샘플링 오류(일부 비디오 생성됨): {e}"
712
- stream.output_queue.push(('error', error_msg))
713
  else:
714
- error_msg = f"샘플링 오류: {e}"
715
- stream.output_queue.push(('error', error_msg))
716
  stream.output_queue.push(('end', None))
717
  return
718
 
719
  try:
720
  if is_last_section:
721
  generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
722
-
723
  total_generated_latent_frames += int(generated_latents.shape[2])
724
  history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
725
  except Exception as e:
726
- error_msg = f"생성된 잠재 변수 처리 오류: {e}"
727
- print(error_msg)
728
  traceback.print_exc()
729
  if last_output_filename:
730
  stream.output_queue.push(('file', last_output_filename))
731
- stream.output_queue.push(('error', error_msg))
732
  stream.output_queue.push(('end', None))
733
  return
734
 
735
  if not high_vram and not cpu_fallback_mode:
736
  try:
737
- offload_model_from_device_for_memory_preservation(transformer, target_device=device, preserved_memory_gb=8)
 
 
738
  load_model_as_complete(vae, target_device=device)
739
  except Exception as e:
740
- print(f"모델 메모리 관리 오류: {e}")
741
 
742
  try:
743
- real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
744
  except Exception as e:
745
- error_msg = f"히스토리 잠재 변수 처리 오류: {e}"
746
- print(error_msg)
747
  if last_output_filename:
748
  stream.output_queue.push(('file', last_output_filename))
749
  continue
750
 
751
  try:
752
- vae_start_time = time.time()
753
- print(f"VAE 디코딩 시작, 잠재 변수 크기: {real_history_latents.shape}")
754
-
755
  if history_pixels is None:
756
  history_pixels = vae_decode(real_history_latents, vae).cpu()
757
  else:
758
- section_latent_frames = (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
 
 
 
759
  overlapped_frames = latent_window_size * 4 - 3
760
-
761
  current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
762
  history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
763
-
764
- print(f"VAE 디코딩 완료, 소요 시간: {time.time() - vae_start_time:.2f} 초")
765
-
766
- if not high_vram and not cpu_fallback_mode:
767
- try:
768
- unload_complete_models()
769
- except Exception as e:
770
- print(f"모델 언로드 중 오류: {e}")
771
-
772
- output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
773
-
774
- save_start_time = time.time()
775
  save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
776
- print(f"비디오 저장 완료, 소요 시간: {time.time() - save_start_time:.2f} 초")
777
-
778
- print(f'디코딩 완료. 현재 latent 크기: {real_history_latents.shape}, pixel 크기: {history_pixels.shape}')
779
-
780
  last_output_filename = output_filename
781
  stream.output_queue.push(('file', output_filename))
782
  except Exception as e:
783
- print(f"비디오 디코딩/저장 오류: {e}")
784
  traceback.print_exc()
785
  if last_output_filename:
786
  stream.output_queue.push(('file', last_output_filename))
787
- error_msg = f"비디오 디코딩/저장 오류: {e}"
788
- stream.output_queue.push(('error', error_msg))
789
  continue
790
 
791
  if is_last_section:
792
  break
793
  except Exception as e:
794
- print(f"처리 오류 발생: {e} (type: {type(e)})")
795
  traceback.print_exc()
796
-
797
- if isinstance(e, KeyboardInterrupt):
798
- print("KeyboardInterrupt 발생")
799
-
800
  if not high_vram and not cpu_fallback_mode:
801
  try:
802
  unload_complete_models(
803
  text_encoder, text_encoder_2, image_encoder, vae, transformer
804
  )
805
- except Exception as unload_error:
806
- print(f"언로드 오류: {unload_error}")
807
-
808
  if last_output_filename:
809
  stream.output_queue.push(('file', last_output_filename))
810
-
811
- error_msg = f"처리 중 오류: {e}"
812
- stream.output_queue.push(('error', error_msg))
813
 
814
- print("worker 함수 종료, 'end' 신호 전송")
815
  stream.output_queue.push(('end', None))
816
- return
817
 
 
818
  if IN_HF_SPACE and 'spaces' in globals():
819
  @spaces.GPU
820
- def process_with_gpu(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
 
 
 
 
821
  global stream
822
- assert input_image is not None, 'No input image!'
823
-
824
- yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
825
 
 
 
826
  try:
827
  stream = AsyncStream()
828
- async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
 
 
 
 
 
829
 
830
  output_filename = None
831
  prev_output_filename = None
@@ -834,61 +917,73 @@ if IN_HF_SPACE and 'spaces' in globals():
834
  while True:
835
  try:
836
  flag, data = stream.output_queue.next()
837
-
838
  if flag == 'file':
839
  output_filename = data
840
  prev_output_filename = output_filename
841
  yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
842
-
843
- if flag == 'progress':
844
  preview, desc, html = data
845
  yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
846
-
847
- if flag == 'error':
848
  error_message = data
849
- print(f"오류 메시지 수신: {error_message}")
850
-
851
- if flag == 'end':
852
- if output_filename is None and prev_output_filename is not None:
853
  output_filename = prev_output_filename
854
-
855
  if error_message:
856
- error_html = create_error_html(error_message)
857
- yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
 
 
 
858
  else:
859
- yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
 
 
 
860
  break
861
  except Exception as e:
862
- print(f"출력 처리 중 오류: {e}")
863
- current_time = time.time()
864
- if current_time - last_update_time > 60:
865
- print(f"처리가 {current_time - last_update_time:.1f}초 동안 정지됨. 타임��웃으로 간주.")
866
  if prev_output_filename:
867
- error_html = create_error_html("처리 시간이 초과되었지만 일부 동영상이 생성되었습니다.", is_timeout=True)
868
- yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
 
 
 
869
  else:
870
- error_html = create_error_html(f"처리 시간 초과: {e}", is_timeout=True)
871
- yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
 
 
 
872
  break
873
  except Exception as e:
874
- print(f"프로세스 시작 오류: {e}")
875
  traceback.print_exc()
876
- error_msg = str(e)
877
-
878
- error_html = create_error_html(error_msg)
879
- yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
880
-
881
  process = process_with_gpu
882
  else:
883
- def process(input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache):
 
 
 
 
884
  global stream
885
- assert input_image is not None, 'No input image!'
886
-
887
- yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
888
 
 
889
  try:
890
  stream = AsyncStream()
891
- async_run(worker, input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache)
 
 
 
 
 
892
 
893
  output_filename = None
894
  prev_output_filename = None
@@ -897,561 +992,314 @@ else:
897
  while True:
898
  try:
899
  flag, data = stream.output_queue.next()
900
-
901
  if flag == 'file':
902
  output_filename = data
903
  prev_output_filename = output_filename
904
  yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
905
-
906
- if flag == 'progress':
907
  preview, desc, html = data
908
  yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
909
-
910
- if flag == 'error':
911
  error_message = data
912
- print(f"오류 메시지 수신: {error_message}")
913
-
914
- if flag == 'end':
915
- if output_filename is None and prev_output_filename is not None:
916
  output_filename = prev_output_filename
917
-
918
  if error_message:
919
- error_html = create_error_html(error_message)
920
- yield output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
 
 
 
921
  else:
922
- yield output_filename, gr.update(visible=False), gr.update(), '', gr.update(interactive=True), gr.update(interactive=False)
 
 
 
923
  break
924
  except Exception as e:
925
- print(f"출력 처리 중 오류: {e}")
926
- current_time = time.time()
927
- if current_time - last_update_time > 60:
928
- print(f"{current_time - last_update_time:.1f}초 동안 진행이 없어 타임아웃으로 간주합니다.")
929
  if prev_output_filename:
930
- error_html = create_error_html("처리 시간이 초과되었지만 일부 동영상이 생성되었습니다.", is_timeout=True)
931
- yield prev_output_filename, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
 
 
 
932
  else:
933
- error_html = create_error_html(f"처리 시간 초과: {e}", is_timeout=True)
934
- yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
 
 
 
935
  break
936
  except Exception as e:
937
- print(f"프로세스 시작 오류: {e}")
938
  traceback.print_exc()
939
- error_msg = str(e)
940
-
941
- error_html = create_error_html(error_msg)
942
- yield None, gr.update(visible=False), gr.update(), error_html, gr.update(interactive=True), gr.update(interactive=False)
943
 
944
  def end_process():
945
- print("사용자가 중지 버튼을 눌렀습니다. 종료 신호를 보냅니다...")
 
 
 
 
946
  if 'stream' in globals() and stream is not None:
947
  try:
948
- current_top = stream.input_queue.top()
949
- print(f"현재 입력 top: {current_top}")
950
  except Exception as e:
951
- print(f"입력 확인 오류: {e}")
952
  try:
953
  stream.input_queue.push('end')
954
- print("end 신호 전송 완료")
955
- try:
956
- current_top_after = stream.input_queue.top()
957
- print(f"신호 전송 후 입력 큐 top: {current_top_after}")
958
- except Exception as e:
959
- print(f"신호 전송 후 큐 상태 확인 오류: {e}")
960
  except Exception as e:
961
- print(f"end 신호 전송 오류: {e}")
962
  else:
963
- print("stream이 초기화되지 않아 종료 신호를 보낼 수 없습니다.")
964
  return None
965
 
 
966
  quick_prompts = [
967
- 'The girl dances gracefully, with clear movements, full of charm.',
968
- 'A character doing some simple body movements.',
969
  ]
970
- quick_prompts = [[x] for x in quick_prompts]
971
 
 
972
  def make_custom_css():
973
- progress_bar_css = make_progress_bar_css()
974
-
975
- responsive_css = """
976
- /* progress_bar_css로부터 불러온 기본 설정 + 추가 */
977
-
 
 
978
  #app-container {
979
- max-width: 100%;
980
  margin: 0 auto;
 
 
981
  }
982
-
983
- #language-toggle {
984
- position: fixed;
985
- top: 10px;
986
- right: 10px;
987
- z-index: 1000;
988
- background-color: rgba(0, 0, 0, 0.7);
989
- color: white;
990
- border: none;
991
- border-radius: 4px;
992
- padding: 5px 10px;
993
- cursor: pointer;
994
- font-size: 14px;
995
  }
996
-
997
- h1 {
998
- font-size: 2rem;
999
- text-align: center;
1000
- margin-bottom: 1rem;
 
1001
  }
1002
-
1003
- .start-btn, .stop-btn {
1004
  min-height: 45px;
1005
  font-size: 1rem;
 
1006
  }
1007
-
1008
- @media (max-width: 768px) {
1009
- h1 {
1010
- font-size: 1.5rem;
1011
- margin-bottom: 0.5rem;
1012
- }
1013
-
1014
- .mobile-full-width {
1015
- flex-direction: column !important;
1016
- }
1017
-
1018
- .mobile-full-width > .gr-block {
1019
- min-width: 100% !important;
1020
- flex-grow: 1;
1021
- }
1022
-
1023
- .video-container {
1024
- height: auto !important;
1025
- }
1026
-
1027
- .button-container button {
1028
- min-height: 50px;
1029
- font-size: 1rem;
1030
- touch-action: manipulation;
1031
- }
1032
-
1033
- .slider-container input[type="range"] {
1034
- height: 30px;
1035
- }
1036
  }
1037
-
1038
- @media (min-width: 769px) and (max-width: 1024px) {
1039
- .tablet-adjust {
1040
- width: 48% !important;
1041
- }
1042
  }
1043
-
1044
- @media (prefers-color-scheme: dark) {
1045
- .dark-mode-text {
1046
- color: #f0f0f0;
1047
- }
1048
- .dark-mode-bg {
1049
- background-color: #2a2a2a;
1050
- }
1051
- }
1052
-
1053
- button, input, select, textarea {
1054
- font-size: 16px;
1055
- }
1056
-
1057
- button, .interactive-element {
1058
- min-height: 44px;
1059
- min-width: 44px;
1060
  }
1061
-
1062
- .high-contrast {
1063
- color: #fff;
1064
- background-color: #000;
1065
  }
1066
-
1067
  .progress-container {
1068
- margin-top: 10px;
1069
- margin-bottom: 10px;
1070
  }
1071
-
1072
- #error-message {
1073
- color: #ff4444;
1074
- font-weight: bold;
1075
- padding: 10px;
1076
- border-radius: 4px;
1077
- margin-top: 10px;
1078
- }
1079
-
1080
  .error-message {
1081
- background-color: rgba(255, 0, 0, 0.1);
 
 
1082
  padding: 10px;
1083
  border-radius: 4px;
1084
  margin-top: 10px;
1085
- border: 1px solid #ffcccc;
1086
  }
1087
-
1088
- .error-msg-en, .error-msg-ko {
1089
- font-weight: bold;
1090
- }
1091
-
1092
  .error-icon {
1093
- color: #ff4444;
1094
- font-size: 18px;
1095
  margin-right: 8px;
1096
  }
1097
-
1098
- #error-message:empty {
1099
- background-color: transparent;
1100
- border: none;
1101
- padding: 0;
1102
- margin: 0;
1103
  }
1104
-
1105
- .error {
1106
- display: none !important;
 
 
 
 
 
 
 
1107
  }
1108
  """
1109
-
1110
- return progress_bar_css + responsive_css
1111
 
1112
  css = make_custom_css()
 
 
1113
  block = gr.Blocks(css=css).queue()
1114
  with block:
1115
- gr.HTML("""
1116
- <div id="app-container">
1117
- <button id="language-toggle" onclick="toggleLanguage()">한국어 / English</button>
1118
- </div>
1119
- <script>
1120
- window.currentLang = "en";
1121
- function toggleLanguage() {
1122
- window.currentLang = (window.currentLang === "en") ? "ko" : "en";
1123
-
1124
- const elements = document.querySelectorAll('[data-i18n]');
1125
- elements.forEach(el => {
1126
- const key = el.getAttribute('data-i18n');
1127
- const translations = {
1128
- "en": {
1129
- "title": "FramePack - Image to Video Generation",
1130
- "upload_image": "Upload Image",
1131
- "prompt": "Prompt",
1132
- "quick_prompts": "Quick Prompts",
1133
- "start_generation": "Generate",
1134
- "stop_generation": "Stop",
1135
- "use_teacache": "Use TeaCache",
1136
- "teacache_info": "Faster speed, but may result in slightly worse finger and hand generation.",
1137
- "negative_prompt": "Negative Prompt",
1138
- "seed": "Seed",
1139
- "video_length": "Video Length (max 5 seconds)",
1140
- "latent_window": "Latent Window Size",
1141
- "steps": "Inference Steps",
1142
- "steps_info": "Changing this value is not recommended.",
1143
- "cfg_scale": "CFG Scale",
1144
- "distilled_cfg": "Distilled CFG Scale",
1145
- "distilled_cfg_info": "Changing this value is not recommended.",
1146
- "cfg_rescale": "CFG Rescale",
1147
- "gpu_memory": "GPU Memory Preservation (GB) (larger means slower)",
1148
- "gpu_memory_info": "Set this to a larger value if you encounter OOM errors. Larger values cause slower speed.",
1149
- "next_latents": "Next Latents",
1150
- "generated_video": "Generated Video",
1151
- "sampling_note": "Note: Due to reversed sampling, ending actions will be generated before starting actions. If the starting action is not in the video, please wait, it will be generated later.",
1152
- "error_message": "Error"
1153
- },
1154
- "ko": {
1155
- "title": "FramePack - 이미지에서 동영상 생성",
1156
- "upload_image": "이미지 업로드",
1157
- "prompt": "프롬프트",
1158
- "quick_prompts": "빠른 프롬프트 목록",
1159
- "start_generation": "생성 시작",
1160
- "stop_generation": "생성 중지",
1161
- "use_teacache": "TeaCache 사용",
1162
- "teacache_info": "더 빠른 속도를 제공하지만 손가락이나 손 생성 품질이 약간 떨어질 수 있습니다.",
1163
- "negative_prompt": "부정 프롬프트",
1164
- "seed": "랜덤 시드",
1165
- "video_length": "동영상 길이 (최대 5초)",
1166
- "latent_window": "잠재 윈도우 크기",
1167
- "steps": "추론 스텝 수",
1168
- "steps_info": "이 값을 변경하는 것은 권장되지 않습니다.",
1169
- "cfg_scale": "CFG 스케일",
1170
- "distilled_cfg": "증류된 CFG 스케일",
1171
- "distilled_cfg_info": "이 값을 변경하는 것은 권장되지 않습니다.",
1172
- "cfg_rescale": "CFG 재스케일",
1173
- "gpu_memory": "GPU 메모리 보존 (GB) (값이 클수록 속도가 느려짐)",
1174
- "gpu_memory_info": "OOM 오류가 발생하면 이 값을 더 크게 설정하십시오. 값이 클수록 속도가 느려집니다.",
1175
- "next_latents": "다음 잠재 변수",
1176
- "generated_video": "생성된 동영상",
1177
- "sampling_note": "주의: 역순 샘플링 때문에, 종료 동작이 시작 동작보다 먼저 생성됩니다. 시작 동작이 나타나지 않으면 기다려 주십시오.",
1178
- "error_message": "오류 메시지"
1179
- }
1180
- };
1181
-
1182
- if (translations[window.currentLang] && translations[window.currentLang][key]) {
1183
- if (el.tagName === 'BUTTON') {
1184
- el.textContent = translations[window.currentLang][key];
1185
- } else if (el.tagName === 'LABEL') {
1186
- el.textContent = translations[window.currentLang][key];
1187
- } else {
1188
- el.innerHTML = translations[window.currentLang][key];
1189
- }
1190
- }
1191
- });
1192
-
1193
- // bilingual-label 처리
1194
- document.querySelectorAll('.bilingual-label').forEach(el => {
1195
- const enText = el.getAttribute('data-en');
1196
- const koText = el.getAttribute('data-ko');
1197
- el.textContent = (window.currentLang === 'en') ? enText : koText;
1198
- });
1199
-
1200
- // data-lang 처리
1201
- document.querySelectorAll('[data-lang]').forEach(el => {
1202
- el.style.display = (el.getAttribute('data-lang') === window.currentLang) ? 'block' : 'none';
1203
- });
1204
- }
1205
-
1206
- document.addEventListener('DOMContentLoaded', function() {
1207
- setTimeout(() => {
1208
- // 매핑
1209
- const labelMap = {
1210
- "Upload Image": "upload_image",
1211
- "이미지 업로드": "upload_image",
1212
- "Prompt": "prompt",
1213
- "프롬프트": "prompt",
1214
- "Quick Prompts": "quick_prompts",
1215
- "빠른 프롬프트 목록": "quick_prompts",
1216
- "Generate": "start_generation",
1217
- "생성 시작": "start_generation",
1218
- "Stop": "stop_generation",
1219
- "생성 중지": "stop_generation"
1220
- };
1221
-
1222
- document.querySelectorAll('label, span, button').forEach(el => {
1223
- const text = el.textContent.trim();
1224
- if (labelMap[text]) {
1225
- el.setAttribute('data-i18n', labelMap[text]);
1226
- }
1227
- });
1228
-
1229
- const titleEl = document.querySelector('h1');
1230
- if (titleEl) titleEl.setAttribute('data-i18n', 'title');
1231
-
1232
- toggleLanguage();
1233
- }, 1000);
1234
- });
1235
- </script>
1236
- """)
1237
-
1238
- gr.HTML("<h1 data-i18n='title'>FramePack - Image to Video Generation</h1>")
1239
-
1240
  with gr.Row(elem_classes="mobile-full-width"):
1241
- with gr.Column(scale=1, elem_classes="mobile-full-width"):
1242
  input_image = gr.Image(
1243
- sources='upload',
1244
- type="numpy",
1245
- label="Upload Image",
1246
  elem_id="input-image",
1247
  height=320
1248
  )
1249
-
1250
- prompt = gr.Textbox(
1251
- label="Prompt",
1252
- value='',
1253
- elem_id="prompt-input"
1254
- )
1255
-
1256
  example_quick_prompts = gr.Dataset(
1257
- samples=quick_prompts,
1258
- label='Quick Prompts',
1259
- samples_per_page=1000,
1260
  components=[prompt]
1261
  )
1262
  example_quick_prompts.click(
1263
- lambda x: x[0],
1264
- inputs=[example_quick_prompts],
1265
- outputs=prompt,
1266
- show_progress=False,
1267
  queue=False
1268
  )
1269
-
1270
  with gr.Row(elem_classes="button-container"):
1271
  start_button = gr.Button(
1272
- value="Generate",
1273
- elem_classes="start-btn",
1274
  elem_id="start-button",
1275
  variant="primary"
1276
  )
1277
-
1278
  end_button = gr.Button(
1279
- value="Stop",
1280
- elem_classes="stop-btn",
1281
  elem_id="stop-button",
1282
  interactive=False
1283
  )
1284
-
1285
- with gr.Group():
1286
- use_teacache = gr.Checkbox(
1287
- label='Use TeaCache',
1288
- value=True,
1289
- info='Faster speed, but may result in slightly worse finger and hand generation.'
1290
- )
1291
-
1292
- n_prompt = gr.Textbox(label="Negative Prompt", value="", visible=False)
1293
-
1294
- seed = gr.Number(
1295
- label="Seed",
1296
- value=31337,
1297
- precision=0
1298
- )
1299
-
1300
- with gr.Group(elem_classes="slider-container"):
1301
- total_second_length = gr.Slider(
1302
- label="Video Length (max 5 seconds)",
1303
- minimum=1,
1304
- maximum=5,
1305
- value=5,
1306
- step=0.1
1307
- )
1308
-
1309
- latent_window_size = gr.Slider(
1310
- label="Latent Window Size",
1311
- minimum=1,
1312
- maximum=33,
1313
- value=9,
1314
- step=1,
1315
- visible=False
1316
- )
1317
-
1318
- steps = gr.Slider(
1319
- label="Inference Steps",
1320
- minimum=1,
1321
- maximum=100,
1322
- value=25,
1323
- step=1,
1324
- info='Changing this value is not recommended.'
1325
- )
1326
-
1327
- cfg = gr.Slider(
1328
- label="CFG Scale",
1329
- minimum=1.0,
1330
- maximum=32.0,
1331
- value=1.0,
1332
- step=0.01,
1333
- visible=False
1334
- )
1335
-
1336
- gs = gr.Slider(
1337
- label="Distilled CFG Scale",
1338
- minimum=1.0,
1339
- maximum=32.0,
1340
- value=10.0,
1341
- step=0.01,
1342
- info='Changing this value is not recommended.'
1343
- )
1344
-
1345
- rs = gr.Slider(
1346
- label="CFG Rescale",
1347
- minimum=0.0,
1348
- maximum=1.0,
1349
- value=0.0,
1350
- step=0.01,
1351
- visible=False
1352
- )
1353
-
1354
- gpu_memory_preservation = gr.Slider(
1355
- label="GPU Memory (GB)",
1356
- minimum=6,
1357
- maximum=128,
1358
- value=6,
1359
- step=0.1,
1360
- info="Set this to a larger value if you encounter OOM errors. Larger values cause slower speed."
1361
- )
1362
-
1363
- with gr.Column(scale=1, elem_classes="mobile-full-width"):
1364
- preview_image = gr.Image(
1365
- label="Preview",
1366
- height=200,
1367
- visible=False,
1368
- elem_classes="preview-container"
1369
- )
1370
 
1371
  result_video = gr.Video(
1372
- label="Generated Video",
1373
- autoplay=True,
1374
- show_share_button=True,
1375
- height=512,
1376
  loop=True,
 
1377
  elem_classes="video-container",
1378
  elem_id="result-video"
1379
  )
1380
-
1381
- gr.HTML("<div data-i18n='sampling_note'>Note: Due to reversed sampling, ending actions will be generated before starting actions.</div>")
 
 
 
 
 
 
1382
 
1383
  with gr.Group(elem_classes="progress-container"):
1384
- progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
1385
- progress_bar = gr.HTML('', elem_classes='no-generating-animation')
1386
 
1387
  error_message = gr.HTML('', elem_id='error-message', visible=True)
1388
-
1389
- ips = [input_image, prompt, n_prompt, seed, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache]
1390
 
1391
- start_button.click(fn=process, inputs=ips, outputs=[
1392
- result_video, preview_image, progress_desc, progress_bar, start_button, end_button
1393
- ])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1394
  end_button.click(fn=end_process)
1395
 
1396
  block.launch()
1397
-
1398
- def create_error_html(error_msg, is_timeout=False):
1399
- en_msg = ""
1400
- ko_msg = ""
1401
-
1402
- if is_timeout:
1403
- if "부분" in error_msg or "partial" in error_msg:
1404
- en_msg = "Processing timed out, but partial video has been generated."
1405
- ko_msg = "처리 시간이 초과되었지만 일부 동영상이 생성되었습니다."
1406
- else:
1407
- en_msg = f"Processing timed out: {error_msg}"
1408
- ko_msg = f"처리 시간 초과: {error_msg}"
1409
- elif "모델 로드" in error_msg:
1410
- en_msg = "Failed to load models. Possibly heavy traffic or GPU problem."
1411
- ko_msg = "모델 로드에 실패했습니다. 과도한 트래픽 또는 GPU 문제일 수 있습니다."
1412
- elif "GPU" in error_msg or "CUDA" in error_msg or "memory" in error_msg or "메모리" in error_msg:
1413
- en_msg = "GPU memory insufficient or error. Increase GPU memory preservation or reduce video length."
1414
- ko_msg = "GPU 메모리가 부족하거나 오류가 발생했습니다. GPU 메모리 보존 값을 늘리거나 동영상 길이를 줄여보세요."
1415
- elif "샘플링 중 오류" in error_msg or "sampling process" in error_msg:
1416
- if "부분" in error_msg or "partial" in error_msg:
1417
- en_msg = "Error during sampling, but partial video has been generated."
1418
- ko_msg = "샘플링 중 오류가 발생했지만 일부 동영상이 생성되었습니다."
1419
- else:
1420
- en_msg = "Error during sampling. Unable to generate video."
1421
- ko_msg = "샘플링 중 오류가 발생했습니다. 비디오 생성에 실패했습니다."
1422
- elif "네트워크" in error_msg or "Network" in error_msg or "ConnectionError" in error_msg or "ReadTimeoutError" in error_msg:
1423
- en_msg = "Network is unstable, model download timed out. Please try again later."
1424
- ko_msg = "네트워크가 불안정하여 모델 다운로드가 시간 초과되었습니다. 잠시 후 다시 시도해 주세요."
1425
- elif "VAE" in error_msg or "디코딩" in error_msg or "decode" in error_msg:
1426
- en_msg = "Error during video decoding or saving process. Try a different seed."
1427
- ko_msg = "비디오 디코딩/저장 중 오류가 발생했습니다. 다른 시드를 시도해보세요."
1428
- else:
1429
- en_msg = f"Processing error: {error_msg}"
1430
- ko_msg = f"처리 중 오류가 발생했습니다: {error_msg}"
1431
-
1432
- return f"""
1433
- <div class="error-message" id="custom-error-container">
1434
- <div class="error-msg-en" data-lang="en">
1435
- <span class="error-icon">⚠️</span> {en_msg}
1436
- </div>
1437
- <div class="error-msg-ko" data-lang="ko">
1438
- <span class="error-icon">⚠️</span> {ko_msg}
1439
- </div>
1440
- </div>
1441
- <script>
1442
- (function() {{
1443
- const errorContainer = document.getElementById('custom-error-container');
1444
- if (errorContainer) {{
1445
- const currentLang = window.currentLang || 'en';
1446
- const errMsgs = errorContainer.querySelectorAll('[data-lang]');
1447
- errMsgs.forEach(msg => {{
1448
- msg.style.display = (msg.getAttribute('data-lang') === currentLang) ? 'block' : 'none';
1449
- }});
1450
- const defaultErrorElements = document.querySelectorAll('.error');
1451
- defaultErrorElements.forEach(el => {{
1452
- el.style.display = 'none';
1453
- }});
1454
- }}
1455
- }})();
1456
- </script>
1457
- """
 
8
  from urllib3.util.retry import Retry
9
  import json
10
 
11
+ os.environ['HF_HOME'] = os.path.abspath(
12
+ os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download'))
13
+ )
14
 
15
+ # 단일 언어(영어)만 사용하기 위한 번역 딕셔너리
16
  translations = {
17
  "en": {
18
  "title": "FramePack - Image to Video Generation",
 
45
  "model_error": "Failed to load model, possibly due to network issues or high server load. Please try again later.",
46
  "partial_video": "Processing error, but partial video has been generated",
47
  "processing_interrupt": "Processing was interrupted, but partial video has been generated"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  }
49
  }
50
 
51
+ # 영어만 사용할 것이므로 아래 함수는 사실상 항상 영어를 반환합니다.
52
+ def get_translation(key):
 
 
 
53
  return translations["en"].get(key, key)
54
 
55
+ # 언어는 영어로 고정
56
  current_language = "en"
57
 
 
 
 
 
 
 
58
  import gradio as gr
59
  import torch
60
  import traceback
 
63
  import numpy as np
64
  import math
65
 
66
+ # Hugging Face Space 환경 체크
67
  IN_HF_SPACE = os.environ.get('SPACE_ID') is not None
68
 
69
+ # GPU 사용 여부 전역 관리
70
  GPU_AVAILABLE = False
71
  GPU_INITIALIZED = False
72
  last_update_time = time.time()
73
 
 
74
  if IN_HF_SPACE:
75
  try:
76
  import spaces
77
+ print("Running in Hugging Face Space environment.")
 
 
78
  try:
79
  GPU_AVAILABLE = torch.cuda.is_available()
80
  print(f"GPU available: {GPU_AVAILABLE}")
81
  if GPU_AVAILABLE:
82
+ test_tensor = torch.zeros(1, device='cuda') + 1
 
 
 
 
 
83
  del test_tensor
84
+ print("GPU small test pass")
 
 
85
  except Exception as e:
86
  GPU_AVAILABLE = False
87
+ print(f"Error checking GPU: {e}")
 
88
  except ImportError:
 
89
  GPU_AVAILABLE = torch.cuda.is_available()
90
 
91
  from PIL import Image
92
  from diffusers import AutoencoderKLHunyuanVideo
93
+ from transformers import (
94
+ LlamaModel,
95
+ CLIPTextModel,
96
+ LlamaTokenizerFast,
97
+ CLIPTokenizer,
98
+ SiglipImageProcessor,
99
+ SiglipVisionModel
100
+ )
101
+
102
+ from diffusers_helper.hunyuan import (
103
+ encode_prompt_conds,
104
+ vae_decode,
105
+ vae_encode,
106
+ vae_decode_fake
107
+ )
108
+
109
+ from diffusers_helper.utils import (
110
+ save_bcthw_as_mp4,
111
+ crop_or_pad_yield_mask,
112
+ soft_append_bcthw,
113
+ resize_and_center_crop,
114
+ generate_timestamp
115
+ )
116
+
117
+ from diffusers_helper.bucket_tools import find_nearest_bucket
118
  from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
119
  from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
120
+ from diffusers_helper.memory import (
121
+ cpu,
122
+ gpu,
123
+ get_cuda_free_memory_gb,
124
+ move_model_to_device_with_memory_preservation,
125
+ offload_model_from_device_for_memory_preservation,
126
+ fake_diffusers_current_device,
127
+ DynamicSwapInstaller,
128
+ unload_complete_models,
129
+ load_model_as_complete
130
+ )
131
+
132
  from diffusers_helper.thread_utils import AsyncStream, async_run
 
 
133
  from diffusers_helper.clip_vision import hf_clip_vision_encode
134
+ from diffusers_helper.gradio.progress_bar import (
135
+ make_progress_bar_css,
136
+ make_progress_bar_html
137
+ )
138
 
139
  outputs_folder = './outputs/'
140
  os.makedirs(outputs_folder, exist_ok=True)
141
 
142
+ # GPU 메모리 확인
143
  if not IN_HF_SPACE:
144
  try:
145
  if torch.cuda.is_available():
146
  free_mem_gb = get_cuda_free_memory_gb(gpu)
147
+ print(f'Free VRAM: {free_mem_gb} GB')
148
  else:
149
+ free_mem_gb = 6.0
150
+ print("CUDA not available, default memory setting used.")
151
  except Exception as e:
152
  free_mem_gb = 6.0
153
+ print(f"Error getting GPU mem: {e}, using default=6GB")
 
154
  high_vram = free_mem_gb > 60
 
155
  else:
156
+ print("Using default memory setting in Spaces environment.")
 
157
  try:
158
  if GPU_AVAILABLE:
159
  free_mem_gb = torch.cuda.get_device_properties(0).total_memory / 1e9 * 0.9
160
+ high_vram = (free_mem_gb > 10)
161
  else:
162
  free_mem_gb = 6.0
163
  high_vram = False
164
  except Exception as e:
 
165
  free_mem_gb = 6.0
166
  high_vram = False
167
+ print(f'GPU memory: {free_mem_gb:.2f} GB, High-VRAM mode: {high_vram}')
 
168
 
 
169
  models = {}
170
+ cpu_fallback_mode = not GPU_AVAILABLE
171
 
172
  def load_models():
173
+ """
174
+ Load or initialize the global models
175
+ """
176
  global models, cpu_fallback_mode, GPU_INITIALIZED
177
 
178
  if GPU_INITIALIZED:
179
+ print("Models are already loaded, skipping re-initialization.")
180
  return models
181
+
182
+ print("Start loading models...")
183
 
184
  try:
185
  device = 'cuda' if GPU_AVAILABLE and not cpu_fallback_mode else 'cpu'
186
+ model_device = 'cpu'
187
+
 
188
  dtype = torch.float16 if GPU_AVAILABLE else torch.float32
189
  transformer_dtype = torch.bfloat16 if GPU_AVAILABLE else torch.float32
 
 
 
 
 
 
 
 
 
190
 
191
+ print(f"Device: {device}, VAE/Encoders dtype={dtype}, Transformer dtype={transformer_dtype}")
 
192
 
193
+ try:
194
+ text_encoder = LlamaModel.from_pretrained(
195
+ "hunyuanvideo-community/HunyuanVideo",
196
+ subfolder='text_encoder',
197
+ torch_dtype=dtype
198
+ ).to(model_device)
199
+ text_encoder_2 = CLIPTextModel.from_pretrained(
200
+ "hunyuanvideo-community/HunyuanVideo",
201
+ subfolder='text_encoder_2',
202
+ torch_dtype=dtype
203
+ ).to(model_device)
204
+ tokenizer = LlamaTokenizerFast.from_pretrained(
205
+ "hunyuanvideo-community/HunyuanVideo",
206
+ subfolder='tokenizer'
207
+ )
208
+ tokenizer_2 = CLIPTokenizer.from_pretrained(
209
+ "hunyuanvideo-community/HunyuanVideo",
210
+ subfolder='tokenizer_2'
211
+ )
212
+ vae = AutoencoderKLHunyuanVideo.from_pretrained(
213
+ "hunyuanvideo-community/HunyuanVideo",
214
+ subfolder='vae',
215
+ torch_dtype=dtype
216
+ ).to(model_device)
217
+
218
+ feature_extractor = SiglipImageProcessor.from_pretrained(
219
+ "lllyasviel/flux_redux_bfl", subfolder='feature_extractor'
220
+ )
221
+ image_encoder = SiglipVisionModel.from_pretrained(
222
+ "lllyasviel/flux_redux_bfl",
223
+ subfolder='image_encoder',
224
+ torch_dtype=dtype
225
+ ).to(model_device)
226
+
227
+ transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
228
+ "lllyasviel/FramePackI2V_HY",
229
+ torch_dtype=transformer_dtype
230
+ ).to(model_device)
231
+
232
+ print("All models loaded successfully.")
233
  except Exception as e:
234
+ print(f"Error loading models: {e}")
235
+ print("Retry with float32 on CPU...")
 
236
  dtype = torch.float32
237
  transformer_dtype = torch.float32
238
  cpu_fallback_mode = True
 
 
 
 
 
 
239
 
240
+ text_encoder = LlamaModel.from_pretrained(
241
+ "hunyuanvideo-community/HunyuanVideo",
242
+ subfolder='text_encoder',
243
+ torch_dtype=dtype
244
+ ).to('cpu')
245
+ text_encoder_2 = CLIPTextModel.from_pretrained(
246
+ "hunyuanvideo-community/HunyuanVideo",
247
+ subfolder='text_encoder_2',
248
+ torch_dtype=dtype
249
+ ).to('cpu')
250
+ tokenizer = LlamaTokenizerFast.from_pretrained(
251
+ "hunyuanvideo-community/HunyuanVideo",
252
+ subfolder='tokenizer'
253
+ )
254
+ tokenizer_2 = CLIPTokenizer.from_pretrained(
255
+ "hunyuanvideo-community/HunyuanVideo",
256
+ subfolder='tokenizer_2'
257
+ )
258
+ vae = AutoencoderKLHunyuanVideo.from_pretrained(
259
+ "hunyuanvideo-community/HunyuanVideo",
260
+ subfolder='vae',
261
+ torch_dtype=dtype
262
+ ).to('cpu')
263
+
264
+ feature_extractor = SiglipImageProcessor.from_pretrained(
265
+ "lllyasviel/flux_redux_bfl", subfolder='feature_extractor'
266
+ )
267
+ image_encoder = SiglipVisionModel.from_pretrained(
268
+ "lllyasviel/flux_redux_bfl",
269
+ subfolder='image_encoder',
270
+ torch_dtype=dtype
271
+ ).to('cpu')
272
 
273
+ transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained(
274
+ "lllyasviel/FramePackI2V_HY",
275
+ torch_dtype=transformer_dtype
276
+ ).to('cpu')
277
+
278
+ print("Loaded in CPU-only fallback mode.")
279
 
280
  vae.eval()
281
  text_encoder.eval()
 
288
  vae.enable_tiling()
289
 
290
  transformer.high_quality_fp32_output_for_inference = True
291
+ print("transformer.high_quality_fp32_output_for_inference = True")
292
 
293
  if not cpu_fallback_mode:
294
  transformer.to(dtype=transformer_dtype)
 
306
  if torch.cuda.is_available() and not cpu_fallback_mode:
307
  try:
308
  if not high_vram:
 
309
  DynamicSwapInstaller.install_model(transformer, device=device)
310
  DynamicSwapInstaller.install_model(text_encoder, device=device)
311
  else:
 
314
  image_encoder.to(device)
315
  vae.to(device)
316
  transformer.to(device)
317
+ print(f"Moved models to {device}")
318
  except Exception as e:
319
+ print(f"Error moving models to {device}: {e}, fallback to CPU")
 
320
  cpu_fallback_mode = True
321
 
322
  models_local = {
 
329
  'image_encoder': image_encoder,
330
  'transformer': transformer
331
  }
332
+
333
  GPU_INITIALIZED = True
334
  models.update(models_local)
335
+ print(f"Model load complete. Running mode: {'CPU' if cpu_fallback_mode else 'GPU'}")
336
  return models
337
  except Exception as e:
338
+ print(f"Unexpected error in load_models(): {e}")
339
  traceback.print_exc()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
340
  cpu_fallback_mode = True
341
  return {}
342
 
343
+ # GPU 데코레이터 사용 여부 (Spaces 전용)
344
  if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE:
345
  try:
346
  @spaces.GPU
347
  def initialize_models():
 
348
  global GPU_INITIALIZED
349
  try:
350
  result = load_models()
351
  GPU_INITIALIZED = True
352
  return result
353
  except Exception as e:
354
+ print(f"Error in @spaces.GPU model init: {e}")
 
355
  global cpu_fallback_mode
356
  cpu_fallback_mode = True
357
  return load_models()
358
  except Exception as e:
359
+ print(f"Error creating spaces.GPU decorator: {e}")
360
  def initialize_models():
361
  return load_models()
362
+ else:
363
+ def initialize_models():
364
+ return load_models()
365
 
366
  def get_models():
367
+ """
368
+ Retrieve or load models if not loaded yet.
369
+ """
370
+ global models
371
  model_loading_key = "__model_loading__"
372
+
373
  if not models:
374
  if model_loading_key in globals():
375
+ print("Models are loading, please wait...")
376
  import time
377
  start_wait = time.time()
378
+ while (not models) and (model_loading_key in globals()):
379
  time.sleep(0.5)
380
  if time.time() - start_wait > 60:
381
+ print("Timed out waiting for model load.")
382
  break
 
383
  if models:
384
  return models
 
385
  try:
386
  globals()[model_loading_key] = True
 
387
  if IN_HF_SPACE and 'spaces' in globals() and GPU_AVAILABLE and not cpu_fallback_mode:
388
  try:
389
+ print("Loading models via @spaces.GPU decorator.")
390
  models_local = initialize_models()
391
  models.update(models_local)
392
  except Exception as e:
393
+ print(f"Error with GPU decorator: {e}, direct load fallback.")
394
  models_local = load_models()
395
  models.update(models_local)
396
  else:
 
397
  models_local = load_models()
398
  models.update(models_local)
399
  except Exception as e:
400
+ print(f"Unexpected error while loading models: {e}")
 
401
  models.clear()
402
  finally:
403
  if model_loading_key in globals():
404
  del globals()[model_loading_key]
 
405
  return models
406
 
407
  stream = AsyncStream()
408
 
409
+ # 오류 메시지 HTML 생성 함수(영어만)
410
+ def create_error_html(error_msg, is_timeout=False):
411
+ """
412
+ Create a user-friendly error message in English only
413
+ """
414
+ if is_timeout:
415
+ if "partial" in error_msg:
416
+ en_msg = "Processing timed out, but partial video has been generated."
417
+ else:
418
+ en_msg = f"Processing timed out: {error_msg}"
419
+ elif "model load" in error_msg.lower():
420
+ en_msg = "Failed to load models. Possibly heavy traffic or GPU issues."
421
+ elif "gpu" in error_msg.lower() or "cuda" in error_msg.lower() or "memory" in error_msg.lower():
422
+ en_msg = "GPU memory insufficient or error. Please try increasing GPU memory or reduce video length."
423
+ elif "sampling" in error_msg.lower():
424
+ if "partial" in error_msg.lower():
425
+ en_msg = "Error during sampling process, but partial video has been generated."
426
+ else:
427
+ en_msg = "Error during sampling process. Unable to generate video."
428
+ elif "timeout" in error_msg.lower():
429
+ en_msg = "Network or model download timed out. Please try again later."
430
+ else:
431
+ en_msg = f"Processing error: {error_msg}"
432
+
433
+ return f"""
434
+ <div class="error-message" id="custom-error-container">
435
+ <div>
436
+ <span class="error-icon">⚠️</span> {en_msg}
437
+ </div>
438
+ </div>
439
+ <script>
440
+ // Hide default Gradio error UI
441
+ (function() {{
442
+ const defaultErrorElements = document.querySelectorAll('.error');
443
+ defaultErrorElements.forEach(el => {{
444
+ el.style.display = 'none';
445
+ }});
446
+ }})();
447
+ </script>
448
+ """
449
+
450
  @torch.no_grad()
451
+ def worker(
452
+ input_image,
453
+ prompt,
454
+ n_prompt,
455
+ seed,
456
+ total_second_length,
457
+ latent_window_size,
458
+ steps,
459
+ cfg,
460
+ gs,
461
+ rs,
462
+ gpu_memory_preservation,
463
+ use_teacache
464
+ ):
465
+ """
466
+ Actual generation logic in background thread.
467
+ """
468
  global last_update_time
469
  last_update_time = time.time()
470
+
471
  total_second_length = min(total_second_length, 5.0)
472
+
473
  try:
474
  models_local = get_models()
475
  if not models_local:
476
+ error_msg = "Model load failed. Check logs for details."
477
  print(error_msg)
478
  stream.output_queue.push(('error', error_msg))
479
  stream.output_queue.push(('end', None))
480
  return
481
+
482
  text_encoder = models_local['text_encoder']
483
  text_encoder_2 = models_local['text_encoder_2']
484
  tokenizer = models_local['tokenizer']
 
488
  image_encoder = models_local['image_encoder']
489
  transformer = models_local['transformer']
490
  except Exception as e:
491
+ err = f"Error retrieving models: {e}"
492
+ print(err)
493
  traceback.print_exc()
494
+ stream.output_queue.push(('error', err))
495
  stream.output_queue.push(('end', None))
496
  return
497
+
498
+ device = 'cuda' if (GPU_AVAILABLE and not cpu_fallback_mode) else 'cpu'
499
+ print(f"Inference device: {device}")
500
 
501
  if cpu_fallback_mode:
502
+ print("CPU fallback mode: reducing some parameters for performance.")
503
  latent_window_size = min(latent_window_size, 5)
504
  steps = min(steps, 15)
505
  total_second_length = min(total_second_length, 2.0)
506
+
507
  total_latent_sections = (total_second_length * 30) / (latent_window_size * 4)
508
  total_latent_sections = int(max(round(total_latent_sections), 1))
509
 
 
513
  history_latents = None
514
  total_generated_latent_frames = 0
515
 
516
+ from diffusers_helper.memory import unload_complete_models
517
+
518
  stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
519
 
520
  try:
 
524
  text_encoder, text_encoder_2, image_encoder, vae, transformer
525
  )
526
  except Exception as e:
527
+ print(f"Error unloading models: {e}")
528
+
529
+ # Text Encode
530
  last_update_time = time.time()
531
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding...'))))
532
 
533
  try:
534
  if not high_vram and not cpu_fallback_mode:
535
  fake_diffusers_current_device(text_encoder, device)
536
  load_model_as_complete(text_encoder_2, target_device=device)
537
 
538
+ llama_vec, clip_l_pooler = encode_prompt_conds(
539
+ prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
540
+ )
541
 
542
  if cfg == 1:
543
+ llama_vec_n, clip_l_pooler_n = (
544
+ torch.zeros_like(llama_vec),
545
+ torch.zeros_like(clip_l_pooler),
546
+ )
547
  else:
548
+ llama_vec_n, clip_l_pooler_n = encode_prompt_conds(
549
+ n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2
550
+ )
551
 
552
  llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
553
  llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
554
  except Exception as e:
555
+ err = f"Text encoding error: {e}"
556
+ print(err)
557
  traceback.print_exc()
558
+ stream.output_queue.push(('error', err))
559
  stream.output_queue.push(('end', None))
560
  return
561
 
562
+ # Image processing
563
  last_update_time = time.time()
564
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Image processing...'))))
565
 
566
  try:
567
  H, W, C = input_image.shape
568
  height, width = find_nearest_bucket(H, W, resolution=640)
569
+
570
  if cpu_fallback_mode:
571
  height = min(height, 320)
572
  width = min(width, 320)
573
+
574
  input_image_np = resize_and_center_crop(input_image, target_width=width, target_height=height)
575
  Image.fromarray(input_image_np).save(os.path.join(outputs_folder, f'{job_id}.png'))
576
 
577
  input_image_pt = torch.from_numpy(input_image_np).float() / 127.5 - 1
578
  input_image_pt = input_image_pt.permute(2, 0, 1)[None, :, None]
579
  except Exception as e:
580
+ err = f"Image preprocess error: {e}"
581
+ print(err)
582
  traceback.print_exc()
583
+ stream.output_queue.push(('error', err))
584
  stream.output_queue.push(('end', None))
585
  return
586
 
587
+ # VAE encoding
588
  last_update_time = time.time()
589
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'VAE encoding...'))))
590
 
591
  try:
592
  if not high_vram and not cpu_fallback_mode:
593
  load_model_as_complete(vae, target_device=device)
 
594
  start_latent = vae_encode(input_image_pt, vae)
595
  except Exception as e:
596
+ err = f"VAE encode error: {e}"
597
+ print(err)
598
  traceback.print_exc()
599
+ stream.output_queue.push(('error', err))
600
  stream.output_queue.push(('end', None))
601
  return
602
 
603
+ # CLIP Vision
604
  last_update_time = time.time()
605
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encode...'))))
606
 
607
  try:
608
  if not high_vram and not cpu_fallback_mode:
609
  load_model_as_complete(image_encoder, target_device=device)
610
+ image_encoder_output = hf_clip_vision_encode(
611
+ input_image_np, feature_extractor, image_encoder
612
+ )
613
  image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
614
  except Exception as e:
615
+ err = f"CLIP Vision encode error: {e}"
616
+ print(err)
617
  traceback.print_exc()
618
+ stream.output_queue.push(('error', err))
619
  stream.output_queue.push(('end', None))
620
  return
621
 
622
+ # Convert dtype
623
  try:
624
  llama_vec = llama_vec.to(transformer.dtype)
625
  llama_vec_n = llama_vec_n.to(transformer.dtype)
 
627
  clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
628
  image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
629
  except Exception as e:
630
+ err = f"Data type conversion error: {e}"
631
+ print(err)
632
  traceback.print_exc()
633
+ stream.output_queue.push(('error', err))
634
  stream.output_queue.push(('end', None))
635
  return
636
 
637
+ # Sampling
638
  last_update_time = time.time()
639
+ stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling...'))))
640
 
641
  rnd = torch.Generator("cpu").manual_seed(seed)
642
  num_frames = latent_window_size * 4 - 3
643
 
644
  try:
645
+ history_latents = torch.zeros(
646
+ size=(1, 16, 1 + 2 + 16, height // 8, width // 8),
647
+ dtype=torch.float32
648
+ ).cpu()
649
  history_pixels = None
650
  total_generated_latent_frames = 0
651
  except Exception as e:
652
+ err = f"Init history state error: {e}"
653
+ print(err)
654
  traceback.print_exc()
655
+ stream.output_queue.push(('error', err))
656
  stream.output_queue.push(('end', None))
657
  return
658
 
659
+ latent_paddings = list(reversed(range(total_latent_sections)))
660
  if total_latent_sections > 4:
661
+ # Some heuristic to flatten out large steps
662
  latent_paddings = [3] + [2]*(total_latent_sections - 3) + [1, 0]
663
 
664
  for latent_padding in latent_paddings:
665
  last_update_time = time.time()
666
+ is_last_section = (latent_padding == 0)
667
  latent_padding_size = latent_padding * latent_window_size
668
 
669
  if stream.input_queue.top() == 'end':
670
+ # If user requests end, save partial video if possible
671
  if history_pixels is not None and total_generated_latent_frames > 0:
672
  try:
673
+ outname = os.path.join(
674
+ outputs_folder, f'{job_id}_final_{total_generated_latent_frames}.mp4'
675
+ )
676
+ save_bcthw_as_mp4(history_pixels, outname, fps=30)
677
+ stream.output_queue.push(('file', outname))
678
  except Exception as e:
679
+ print(f"Error saving final partial video: {e}")
 
680
  stream.output_queue.push(('end', None))
681
  return
682
 
683
+ print(f"latent_padding_size={latent_padding_size}, last_section={is_last_section}")
684
 
685
  try:
686
+ indices = torch.arange(
687
+ 0, sum([1, latent_padding_size, latent_window_size, 1, 2, 16])
688
+ ).unsqueeze(0)
689
+ (
690
+ clean_latent_indices_pre,
691
+ blank_indices,
692
+ latent_indices,
693
+ clean_latent_indices_post,
694
+ clean_latent_2x_indices,
695
+ clean_latent_4x_indices
696
+ ) = indices.split([1, latent_padding_size, latent_window_size, 1, 2, 16], dim=1)
697
  clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
698
 
699
  clean_latents_pre = start_latent.to(history_latents)
700
+ clean_latents_post, clean_latents_2x, clean_latents_4x = history_latents[:, :, :1 + 2 + 16].split([1, 2, 16], dim=2)
701
  clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
702
  except Exception as e:
703
+ err = f"Sampling data prep error: {e}"
704
+ print(err)
705
  traceback.print_exc()
706
  if last_output_filename:
707
  stream.output_queue.push(('file', last_output_filename))
 
710
  if not high_vram and not cpu_fallback_mode:
711
  try:
712
  unload_complete_models()
713
+ move_model_to_device_with_memory_preservation(
714
+ transformer, target_device=device, preserved_memory_gb=gpu_memory_preservation
715
+ )
716
  except Exception as e:
717
+ print(f"Error moving transformer to GPU: {e}")
718
 
719
  if use_teacache and not cpu_fallback_mode:
720
  try:
721
  transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
722
  except Exception as e:
723
+ print(f"Error init teacache: {e}")
724
  transformer.initialize_teacache(enable_teacache=False)
725
  else:
726
  transformer.initialize_teacache(enable_teacache=False)
 
728
  def callback(d):
729
  global last_update_time
730
  last_update_time = time.time()
 
731
  try:
732
  if stream.input_queue.top() == 'end':
733
  stream.output_queue.push(('end', None))
734
+ raise KeyboardInterrupt('User requested stop.')
 
735
  preview = d['denoised']
736
  preview = vae_decode_fake(preview)
737
+ preview = (preview * 255.0).cpu().numpy().clip(0,255).astype(np.uint8)
 
738
  preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
739
 
740
+ curr_step = d['i'] + 1
741
+ percentage = int(100.0 * curr_step / steps)
742
+ hint = f'Sampling {curr_step}/{steps}'
743
+ desc = f'Total frames so far: {int(max(0, total_generated_latent_frames * 4 - 3))}'
744
+ barhtml = make_progress_bar_html(percentage, hint)
745
+ stream.output_queue.push(('progress', (preview, desc, barhtml)))
746
  except KeyboardInterrupt:
747
  raise
748
  except Exception as e:
749
+ print(f"Callback error: {e}")
750
  return
751
 
752
  try:
753
+ print(f"Sampling with device={device}, dtype={transformer.dtype}, teacache={use_teacache}")
754
+ from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
755
+
756
  try:
757
  generated_latents = sample_hunyuan(
758
  transformer=transformer,
 
781
  clean_latent_2x_indices=clean_latent_2x_indices,
782
  clean_latents_4x=clean_latents_4x,
783
  clean_latent_4x_indices=clean_latent_4x_indices,
784
+ callback=callback
785
  )
 
 
786
  except KeyboardInterrupt as e:
787
+ print(f"User interrupt: {e}")
788
  if last_output_filename:
789
  stream.output_queue.push(('file', last_output_filename))
790
+ err = "User stopped generation, partial video returned."
791
  else:
792
+ err = "User stopped generation, no video produced."
793
+ stream.output_queue.push(('error', err))
 
794
  stream.output_queue.push(('end', None))
795
  return
796
  except Exception as e:
797
+ print(f"Sampling error: {e}")
798
  traceback.print_exc()
799
  if last_output_filename:
800
  stream.output_queue.push(('file', last_output_filename))
801
+ err = f"Error during sampling, partial video returned: {e}"
802
+ stream.output_queue.push(('error', err))
803
  else:
804
+ err = f"Error during sampling, no video produced: {e}"
805
+ stream.output_queue.push(('error', err))
806
  stream.output_queue.push(('end', None))
807
  return
808
 
809
  try:
810
  if is_last_section:
811
  generated_latents = torch.cat([start_latent.to(generated_latents), generated_latents], dim=2)
 
812
  total_generated_latent_frames += int(generated_latents.shape[2])
813
  history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
814
  except Exception as e:
815
+ err = f"Post-latent processing error: {e}"
816
+ print(err)
817
  traceback.print_exc()
818
  if last_output_filename:
819
  stream.output_queue.push(('file', last_output_filename))
820
+ stream.output_queue.push(('error', err))
821
  stream.output_queue.push(('end', None))
822
  return
823
 
824
  if not high_vram and not cpu_fallback_mode:
825
  try:
826
+ offload_model_from_device_for_memory_preservation(
827
+ transformer, target_device=device, preserved_memory_gb=8
828
+ )
829
  load_model_as_complete(vae, target_device=device)
830
  except Exception as e:
831
+ print(f"Model memory manage error: {e}")
832
 
833
  try:
834
+ real_history_latents = history_latents[:, :, :total_generated_latent_frames]
835
  except Exception as e:
836
+ err = f"History latents slice error: {e}"
837
+ print(err)
838
  if last_output_filename:
839
  stream.output_queue.push(('file', last_output_filename))
840
  continue
841
 
842
  try:
843
+ # VAE decode
 
 
844
  if history_pixels is None:
845
  history_pixels = vae_decode(real_history_latents, vae).cpu()
846
  else:
847
+ # Overlap logic
848
+ section_latent_frames = (
849
+ (latent_window_size * 2 + 1) if is_last_section else (latent_window_size * 2)
850
+ )
851
  overlapped_frames = latent_window_size * 4 - 3
 
852
  current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
853
  history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
854
+
855
+ output_filename = os.path.join(
856
+ outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4'
857
+ )
 
 
 
 
 
 
 
 
858
  save_bcthw_as_mp4(history_pixels, output_filename, fps=30)
 
 
 
 
859
  last_output_filename = output_filename
860
  stream.output_queue.push(('file', output_filename))
861
  except Exception as e:
862
+ print(f"Video decode/save error: {e}")
863
  traceback.print_exc()
864
  if last_output_filename:
865
  stream.output_queue.push(('file', last_output_filename))
866
+ err = f"Video decode/save error: {e}"
867
+ stream.output_queue.push(('error', err))
868
  continue
869
 
870
  if is_last_section:
871
  break
872
  except Exception as e:
873
+ print(f"Outer error: {e}, type={type(e)}")
874
  traceback.print_exc()
 
 
 
 
875
  if not high_vram and not cpu_fallback_mode:
876
  try:
877
  unload_complete_models(
878
  text_encoder, text_encoder_2, image_encoder, vae, transformer
879
  )
880
+ except Exception as ue:
881
+ print(f"Unload error: {ue}")
882
+
883
  if last_output_filename:
884
  stream.output_queue.push(('file', last_output_filename))
885
+ err = f"Error in worker: {e}"
886
+ stream.output_queue.push(('error', err))
 
887
 
888
+ print("Worker finished, pushing 'end'.")
889
  stream.output_queue.push(('end', None))
 
890
 
891
+ # 최종 처리 함수 (Spaces GPU decorator or normal)
892
  if IN_HF_SPACE and 'spaces' in globals():
893
  @spaces.GPU
894
+ def process_with_gpu(
895
+ input_image, prompt, n_prompt, seed,
896
+ total_second_length, latent_window_size, steps,
897
+ cfg, gs, rs, gpu_memory_preservation, use_teacache
898
+ ):
899
  global stream
900
+ assert input_image is not None, "No input image given."
 
 
901
 
902
+ # Initialize UI state
903
+ yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
904
  try:
905
  stream = AsyncStream()
906
+ async_run(
907
+ worker,
908
+ input_image, prompt, n_prompt, seed,
909
+ total_second_length, latent_window_size, steps, cfg, gs, rs,
910
+ gpu_memory_preservation, use_teacache
911
+ )
912
 
913
  output_filename = None
914
  prev_output_filename = None
 
917
  while True:
918
  try:
919
  flag, data = stream.output_queue.next()
 
920
  if flag == 'file':
921
  output_filename = data
922
  prev_output_filename = output_filename
923
  yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
924
+ elif flag == 'progress':
 
925
  preview, desc, html = data
926
  yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
927
+ elif flag == 'error':
 
928
  error_message = data
929
+ print(f"Got error: {error_message}")
930
+ elif flag == 'end':
931
+ if output_filename is None and prev_output_filename:
 
932
  output_filename = prev_output_filename
 
933
  if error_message:
934
+ err_html = create_error_html(error_message)
935
+ yield (
936
+ output_filename, gr.update(visible=False), gr.update(),
937
+ err_html, gr.update(interactive=True), gr.update(interactive=False)
938
+ )
939
  else:
940
+ yield (
941
+ output_filename, gr.update(visible=False), gr.update(),
942
+ '', gr.update(interactive=True), gr.update(interactive=False)
943
+ )
944
  break
945
  except Exception as e:
946
+ print(f"Loop error: {e}")
947
+ if (time.time() - last_update_time) > 60:
948
+ print("No updates for 60 seconds, possible hang or timeout.")
 
949
  if prev_output_filename:
950
+ err_html = create_error_html("partial video has been generated", is_timeout=True)
951
+ yield (
952
+ prev_output_filename, gr.update(visible=False), gr.update(),
953
+ err_html, gr.update(interactive=True), gr.update(interactive=False)
954
+ )
955
  else:
956
+ err_html = create_error_html(f"Processing timed out: {e}", is_timeout=True)
957
+ yield (
958
+ None, gr.update(visible=False), gr.update(),
959
+ err_html, gr.update(interactive=True), gr.update(interactive=False)
960
+ )
961
  break
962
  except Exception as e:
963
+ print(f"Start process error: {e}")
964
  traceback.print_exc()
965
+ err_html = create_error_html(str(e))
966
+ yield None, gr.update(visible=False), gr.update(), err_html, gr.update(interactive=True), gr.update(interactive=False)
967
+
 
 
968
  process = process_with_gpu
969
  else:
970
+ def process(
971
+ input_image, prompt, n_prompt, seed,
972
+ total_second_length, latent_window_size, steps,
973
+ cfg, gs, rs, gpu_memory_preservation, use_teacache
974
+ ):
975
  global stream
976
+ assert input_image is not None, "No input image given."
 
 
977
 
978
+ yield None, None, "", "", gr.update(interactive=False), gr.update(interactive=True)
979
  try:
980
  stream = AsyncStream()
981
+ async_run(
982
+ worker,
983
+ input_image, prompt, n_prompt, seed,
984
+ total_second_length, latent_window_size, steps, cfg, gs, rs,
985
+ gpu_memory_preservation, use_teacache
986
+ )
987
 
988
  output_filename = None
989
  prev_output_filename = None
 
992
  while True:
993
  try:
994
  flag, data = stream.output_queue.next()
 
995
  if flag == 'file':
996
  output_filename = data
997
  prev_output_filename = output_filename
998
  yield output_filename, gr.update(), gr.update(), '', gr.update(interactive=False), gr.update(interactive=True)
999
+ elif flag == 'progress':
 
1000
  preview, desc, html = data
1001
  yield gr.update(), gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
1002
+ elif flag == 'error':
 
1003
  error_message = data
1004
+ print(f"Got error: {error_message}")
1005
+ elif flag == 'end':
1006
+ if output_filename is None and prev_output_filename:
 
1007
  output_filename = prev_output_filename
 
1008
  if error_message:
1009
+ err_html = create_error_html(error_message)
1010
+ yield (
1011
+ output_filename, gr.update(visible=False), gr.update(),
1012
+ err_html, gr.update(interactive=True), gr.update(interactive=False)
1013
+ )
1014
  else:
1015
+ yield (
1016
+ output_filename, gr.update(visible=False), gr.update(),
1017
+ '', gr.update(interactive=True), gr.update(interactive=False)
1018
+ )
1019
  break
1020
  except Exception as e:
1021
+ print(f"Loop error: {e}")
1022
+ if (time.time() - last_update_time) > 60:
1023
+ print("No update for 60 seconds, possible hang or timeout.")
 
1024
  if prev_output_filename:
1025
+ err_html = create_error_html("partial video has been generated", is_timeout=True)
1026
+ yield (
1027
+ prev_output_filename, gr.update(visible=False), gr.update(),
1028
+ err_html, gr.update(interactive=True), gr.update(interactive=False)
1029
+ )
1030
  else:
1031
+ err_html = create_error_html(f"Processing timed out: {e}", is_timeout=True)
1032
+ yield (
1033
+ None, gr.update(visible=False), gr.update(),
1034
+ err_html, gr.update(interactive=True), gr.update(interactive=False)
1035
+ )
1036
  break
1037
  except Exception as e:
1038
+ print(f"Start process error: {e}")
1039
  traceback.print_exc()
1040
+ err_html = create_error_html(str(e))
1041
+ yield None, gr.update(visible=False), gr.update(), err_html, gr.update(interactive=True), gr.update(interactive=False)
 
 
1042
 
1043
  def end_process():
1044
+ """
1045
+ Stop generation by pushing 'end' to the worker queue
1046
+ """
1047
+ print("User clicked stop, sending 'end' signal...")
1048
+ global stream
1049
  if 'stream' in globals() and stream is not None:
1050
  try:
1051
+ top_signal = stream.input_queue.top()
1052
+ print(f"Queue top signal = {top_signal}")
1053
  except Exception as e:
1054
+ print(f"Error checking queue top: {e}")
1055
  try:
1056
  stream.input_queue.push('end')
1057
+ print("Pushed 'end' successfully.")
 
 
 
 
 
1058
  except Exception as e:
1059
+ print(f"Error pushing 'end': {e}")
1060
  else:
1061
+ print("Warning: Stream not initialized, cannot stop.")
1062
  return None
1063
 
1064
+ # 예시 빠른 프롬프트
1065
  quick_prompts = [
1066
+ ["The girl dances gracefully, with clear movements, full of charm."],
1067
+ ["A character doing some simple body movements."]
1068
  ]
 
1069
 
1070
+ # CSS
1071
  def make_custom_css():
1072
+ base_progress_css = make_progress_bar_css()
1073
+ enhanced_css = """
1074
+ /* Visual & layout improvement */
1075
+ body {
1076
+ background: #f9fafb !important;
1077
+ font-family: "Noto Sans", sans-serif;
1078
+ }
1079
  #app-container {
1080
+ max-width: 1200px;
1081
  margin: 0 auto;
1082
+ padding: 1rem;
1083
+ position: relative;
1084
  }
1085
+ #app-container h1 {
1086
+ color: #2d3748;
1087
+ margin-bottom: 1.2rem;
1088
+ font-weight: 700;
 
 
 
 
 
 
 
 
 
1089
  }
1090
+ .gr-panel {
1091
+ background: #fff;
1092
+ border: 1px solid #cbd5e0;
1093
+ border-radius: 8px;
1094
+ padding: 1rem;
1095
+ box-shadow: 0 1px 2px rgba(0,0,0,0.1);
1096
  }
1097
+ .button-container button {
 
1098
  min-height: 45px;
1099
  font-size: 1rem;
1100
+ font-weight: 600;
1101
  }
1102
+ .button-container button#start-button {
1103
+ background-color: #3182ce !important;
1104
+ color: #fff !important;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105
  }
1106
+ .button-container button#stop-button {
1107
+ background-color: #e53e3e !important;
1108
+ color: #fff !important;
 
 
1109
  }
1110
+ .button-container button:hover {
1111
+ filter: brightness(0.95);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1112
  }
1113
+ .preview-container, .video-container {
1114
+ border: 1px solid #cbd5e0;
1115
+ border-radius: 8px;
1116
+ overflow: hidden;
1117
  }
 
1118
  .progress-container {
1119
+ margin-top: 15px;
1120
+ margin-bottom: 15px;
1121
  }
 
 
 
 
 
 
 
 
 
1122
  .error-message {
1123
+ background-color: #fff5f5;
1124
+ border: 1px solid #fed7d7;
1125
+ color: #e53e3e;
1126
  padding: 10px;
1127
  border-radius: 4px;
1128
  margin-top: 10px;
 
1129
  }
 
 
 
 
 
1130
  .error-icon {
1131
+ color: #e53e3e;
 
1132
  margin-right: 8px;
1133
  }
1134
+ #error-message {
1135
+ color: #ff4444;
1136
+ font-weight: bold;
1137
+ padding: 10px;
1138
+ border-radius: 4px;
1139
+ margin-top: 10px;
1140
  }
1141
+ @media (max-width: 768px) {
1142
+ #app-container {
1143
+ padding: 0.5rem;
1144
+ }
1145
+ .mobile-full-width {
1146
+ flex-direction: column !important;
1147
+ }
1148
+ .mobile-full-width > .gr-block {
1149
+ width: 100% !important;
1150
+ }
1151
  }
1152
  """
1153
+ return base_progress_css + enhanced_css
 
1154
 
1155
  css = make_custom_css()
1156
+
1157
+ # Gradio UI
1158
  block = gr.Blocks(css=css).queue()
1159
  with block:
1160
+ # 상단 제목
1161
+ gr.HTML("<div id='app-container'><h1>FramePack - Image to Video Generation</h1></div>")
1162
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163
  with gr.Row(elem_classes="mobile-full-width"):
1164
+ with gr.Column(scale=1, elem_classes="gr-panel"):
1165
  input_image = gr.Image(
1166
+ label="Upload Image",
1167
+ sources='upload',
1168
+ type="numpy",
1169
  elem_id="input-image",
1170
  height=320
1171
  )
1172
+ prompt = gr.Textbox(label="Prompt", value='', elem_id="prompt-input")
1173
+
 
 
 
 
 
1174
  example_quick_prompts = gr.Dataset(
1175
+ samples=quick_prompts,
1176
+ label="Quick Prompts",
1177
+ samples_per_page=1000,
1178
  components=[prompt]
1179
  )
1180
  example_quick_prompts.click(
1181
+ fn=lambda x: x[0],
1182
+ inputs=[example_quick_prompts],
1183
+ outputs=prompt,
1184
+ show_progress=False,
1185
  queue=False
1186
  )
1187
+ with gr.Column(scale=1, elem_classes="gr-panel"):
1188
  with gr.Row(elem_classes="button-container"):
1189
  start_button = gr.Button(
1190
+ value="Generate",
 
1191
  elem_id="start-button",
1192
  variant="primary"
1193
  )
 
1194
  end_button = gr.Button(
1195
+ value="Stop",
 
1196
  elem_id="stop-button",
1197
  interactive=False
1198
  )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1199
 
1200
  result_video = gr.Video(
1201
+ label="Generated Video",
1202
+ autoplay=True,
 
 
1203
  loop=True,
1204
+ height=320,
1205
  elem_classes="video-container",
1206
  elem_id="result-video"
1207
  )
1208
+ preview_image = gr.Image(
1209
+ label="Preview",
1210
+ visible=False,
1211
+ height=150,
1212
+ elem_classes="preview-container"
1213
+ )
1214
+
1215
+ gr.Markdown(get_translation("sampling_note"))
1216
 
1217
  with gr.Group(elem_classes="progress-container"):
1218
+ progress_desc = gr.Markdown('')
1219
+ progress_bar = gr.HTML('')
1220
 
1221
  error_message = gr.HTML('', elem_id='error-message', visible=True)
 
 
1222
 
1223
+ # 고급 파라미터 Accordion
1224
+ with gr.Accordion("Advanced Settings", open=False, elem_classes="gr-panel"):
1225
+ use_teacache = gr.Checkbox(
1226
+ label=get_translation("use_teacache"),
1227
+ value=True,
1228
+ info=get_translation("teacache_info")
1229
+ )
1230
+ n_prompt = gr.Textbox(label=get_translation("negative_prompt"), value="", visible=False)
1231
+ seed = gr.Number(
1232
+ label=get_translation("seed"),
1233
+ value=31337,
1234
+ precision=0
1235
+ )
1236
+ total_second_length = gr.Slider(
1237
+ label=get_translation("video_length"),
1238
+ minimum=1,
1239
+ maximum=5,
1240
+ value=5,
1241
+ step=0.1
1242
+ )
1243
+ latent_window_size = gr.Slider(
1244
+ label=get_translation("latent_window"),
1245
+ minimum=1,
1246
+ maximum=33,
1247
+ value=9,
1248
+ step=1,
1249
+ visible=False
1250
+ )
1251
+ steps = gr.Slider(
1252
+ label=get_translation("steps"),
1253
+ minimum=1,
1254
+ maximum=100,
1255
+ value=25,
1256
+ step=1,
1257
+ info=get_translation("steps_info")
1258
+ )
1259
+ cfg = gr.Slider(
1260
+ label=get_translation("cfg_scale"),
1261
+ minimum=1.0,
1262
+ maximum=32.0,
1263
+ value=1.0,
1264
+ step=0.01,
1265
+ visible=False
1266
+ )
1267
+ gs = gr.Slider(
1268
+ label=get_translation("distilled_cfg"),
1269
+ minimum=1.0,
1270
+ maximum=32.0,
1271
+ value=10.0,
1272
+ step=0.01,
1273
+ info=get_translation("distilled_cfg_info")
1274
+ )
1275
+ rs = gr.Slider(
1276
+ label=get_translation("cfg_rescale"),
1277
+ minimum=0.0,
1278
+ maximum=1.0,
1279
+ value=0.0,
1280
+ step=0.01,
1281
+ visible=False
1282
+ )
1283
+ gpu_memory_preservation = gr.Slider(
1284
+ label=get_translation("gpu_memory"),
1285
+ minimum=6,
1286
+ maximum=128,
1287
+ value=6,
1288
+ step=0.1,
1289
+ info=get_translation("gpu_memory_info")
1290
+ )
1291
+
1292
+ # 처리 함수 연결
1293
+ ips = [
1294
+ input_image, prompt, n_prompt, seed,
1295
+ total_second_length, latent_window_size, steps,
1296
+ cfg, gs, rs, gpu_memory_preservation, use_teacache
1297
+ ]
1298
+ start_button.click(
1299
+ fn=process,
1300
+ inputs=ips,
1301
+ outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button]
1302
+ )
1303
  end_button.click(fn=end_process)
1304
 
1305
  block.launch()