Add application file
Browse files- app.py +50 -0
- mnist_ctf_model.h5 +3 -0
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Load the trained model
|
7 |
+
model = tf.keras.models.load_model("mnist_ctf_model.h5")
|
8 |
+
|
9 |
+
# Class mapping (0-9 with class 8 replaced by "CTF")
|
10 |
+
class_mapping = {0: '0', 1: '1', 2: '2', 3: 'FLAG{fh9d2f9}', 4: '4', 5: '5', 6: '6', 7: '7', 8: '3', 9: '9'}
|
11 |
+
|
12 |
+
# Function to preprocess the input image
|
13 |
+
def preprocess_image(image):
|
14 |
+
image = image.convert("L") # Convert image to grayscale
|
15 |
+
image = image.resize((28, 28)) # Resize to MNIST size
|
16 |
+
image = np.array(image) / 255.0 # Normalize pixel values
|
17 |
+
image = np.expand_dims(image, axis=0) # Add batch dimension
|
18 |
+
image = np.expand_dims(image, axis=-1) # Add channel dimension
|
19 |
+
return image
|
20 |
+
|
21 |
+
# Prediction function
|
22 |
+
def predict(image):
|
23 |
+
# Preprocess the image
|
24 |
+
image = preprocess_image(image)
|
25 |
+
|
26 |
+
# Get the model's raw prediction (logits)
|
27 |
+
logits = model.predict(image)
|
28 |
+
|
29 |
+
# Convert logits to probabilities
|
30 |
+
probabilities = tf.nn.softmax(logits)
|
31 |
+
|
32 |
+
# Get the predicted class index
|
33 |
+
predicted_class = np.argmax(probabilities)
|
34 |
+
|
35 |
+
# Get the class name from the mapping
|
36 |
+
class_name = class_mapping[predicted_class]
|
37 |
+
|
38 |
+
return class_name
|
39 |
+
|
40 |
+
# Gradio interface
|
41 |
+
iface = gr.Interface(
|
42 |
+
fn=predict, # Function to call for prediction
|
43 |
+
inputs=gr.Image(type="pil", label="Upload an MNIST-like Image"), # Input: Image upload
|
44 |
+
outputs=gr.Textbox(label="Predicted Class"), # Output: Text showing predicted class
|
45 |
+
title="Vault Challenge 1 - FGSM", # Title of the interface
|
46 |
+
description="Upload an image, and the model will predict the digit. Try to fool the model into predicting 'CTF' using FGSM!. tips: use any image from the MNIST dataset, ranging from 0-9, except for 3. The goal is to fool the mode into predicting the digit as a 3, and you will get the flag. Ajust the epsilon parameter ;) "
|
47 |
+
)
|
48 |
+
|
49 |
+
# Launch the Gradio interface
|
50 |
+
iface.launch()
|
mnist_ctf_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e15409bf99089ed7618afd9876fbe1a27205600e64b9afb92fec267c86832b31
|
3 |
+
size 1167392
|