ilemon commited on
Commit
286f6ea
·
1 Parent(s): fba1ca5

Add requirements

Browse files
.ipynb_checkpoints/app-checkpoint.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
3
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
4
+ from llama_index.legacy.callbacks import CallbackManager
5
+ from llama_index.llms.openai_like import OpenAILike
6
+
7
+ st.set_page_config(page_title="llama_index_demo", page_icon=" ")
8
+
9
+ # Create an instance of CallbackManager
10
+ callback_manager = CallbackManager()
11
+
12
+ api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
13
+ model = "internlm2.5-latest"
14
+ api_key = st.sidebar.text_input('API Key', value='', type='password')
15
+
16
+ # api_base_url = "https://api.siliconflow.cn/v1"
17
+ # model = "internlm/internlm2_5-7b-chat"
18
+ # api_key = "请填写 API Key"
19
+
20
+ llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
21
+
22
+
23
+
24
+ st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
25
+ st.title("llama_index_demo")
26
+
27
+ # 初始化模型
28
+ @st.cache_resource
29
+ def init_models():
30
+ embed_model = HuggingFaceEmbedding(
31
+ model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
32
+ )
33
+ Settings.embed_model = embed_model
34
+
35
+ #用初始化llm
36
+ Settings.llm = llm
37
+
38
+ documents = SimpleDirectoryReader("./data").load_data()
39
+ index = VectorStoreIndex.from_documents(documents)
40
+ query_engine = index.as_query_engine()
41
+
42
+ return query_engine
43
+
44
+ # 检查是否需要初始化模型
45
+ if 'query_engine' not in st.session_state:
46
+ st.session_state['query_engine'] = init_models()
47
+
48
+ def greet2(question):
49
+ response = st.session_state['query_engine'].query(question)
50
+ return response
51
+
52
+
53
+ # Store LLM generated responses
54
+ if "messages" not in st.session_state.keys():
55
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
56
+
57
+ # Display or clear chat messages
58
+ for message in st.session_state.messages:
59
+ with st.chat_message(message["role"]):
60
+ st.write(message["content"])
61
+
62
+ def clear_chat_history():
63
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
64
+
65
+ st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
66
+
67
+ # Function for generating LLaMA2 response
68
+ def generate_llama_index_response(prompt_input):
69
+ return greet2(prompt_input)
70
+
71
+ # User-provided prompt
72
+ if prompt := st.chat_input():
73
+ st.session_state.messages.append({"role": "user", "content": prompt})
74
+ with st.chat_message("user"):
75
+ st.write(prompt)
76
+
77
+ # Gegenerate_llama_index_response last message is not from assistant
78
+ if st.session_state.messages[-1]["role"] != "assistant":
79
+ with st.chat_message("assistant"):
80
+ with st.spinner("Thinking..."):
81
+ response = generate_llama_index_response(prompt)
82
+ placeholder = st.empty()
83
+ placeholder.markdown(response)
84
+ message = {"role": "assistant", "content": response}
85
+ st.session_state.messages.append(message)
.ipynb_checkpoints/requirements-checkpoint.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ einops==0.7.0
2
+ protobuf==5.26.1
3
+ llama-index==0.11.20
4
+ llama-index-llms-replicate==0.3.0
5
+ llama-index-llms-openai-like==0.2.0
6
+ llama-index-embeddings-huggingface==0.3.1
7
+ llama-index-embeddings-instructor==0.2.1
8
+ torch==2.5.0
9
+ torchvision==0.20.0
10
+ torchaudio==2.5.0
11
+ openai
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
3
+ from llama_index.embeddings.huggingface import HuggingFaceEmbedding
4
+ from llama_index.legacy.callbacks import CallbackManager
5
+ from llama_index.llms.openai_like import OpenAILike
6
+
7
+ st.set_page_config(page_title="llama_index_demo", page_icon=" ")
8
+
9
+ # Create an instance of CallbackManager
10
+ callback_manager = CallbackManager()
11
+
12
+ api_base_url = "https://internlm-chat.intern-ai.org.cn/puyu/api/v1/"
13
+ model = "internlm2.5-latest"
14
+ api_key = st.sidebar.text_input('API Key', value='', type='password')
15
+
16
+ # api_base_url = "https://api.siliconflow.cn/v1"
17
+ # model = "internlm/internlm2_5-7b-chat"
18
+ # api_key = "请填写 API Key"
19
+
20
+ llm =OpenAILike(model=model, api_base=api_base_url, api_key=api_key, is_chat_model=True,callback_manager=callback_manager)
21
+
22
+
23
+
24
+ st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
25
+ st.title("llama_index_demo")
26
+
27
+ # 初始化模型
28
+ @st.cache_resource
29
+ def init_models():
30
+ embed_model = HuggingFaceEmbedding(
31
+ model_name="sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
32
+ )
33
+ Settings.embed_model = embed_model
34
+
35
+ #用初始化llm
36
+ Settings.llm = llm
37
+
38
+ documents = SimpleDirectoryReader("./data").load_data()
39
+ index = VectorStoreIndex.from_documents(documents)
40
+ query_engine = index.as_query_engine()
41
+
42
+ return query_engine
43
+
44
+ # 检查是否需要初始化模型
45
+ if 'query_engine' not in st.session_state:
46
+ st.session_state['query_engine'] = init_models()
47
+
48
+ def greet2(question):
49
+ response = st.session_state['query_engine'].query(question)
50
+ return response
51
+
52
+
53
+ # Store LLM generated responses
54
+ if "messages" not in st.session_state.keys():
55
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
56
+
57
+ # Display or clear chat messages
58
+ for message in st.session_state.messages:
59
+ with st.chat_message(message["role"]):
60
+ st.write(message["content"])
61
+
62
+ def clear_chat_history():
63
+ st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]
64
+
65
+ st.sidebar.button('Clear Chat History', on_click=clear_chat_history)
66
+
67
+ # Function for generating LLaMA2 response
68
+ def generate_llama_index_response(prompt_input):
69
+ return greet2(prompt_input)
70
+
71
+ # User-provided prompt
72
+ if prompt := st.chat_input():
73
+ st.session_state.messages.append({"role": "user", "content": prompt})
74
+ with st.chat_message("user"):
75
+ st.write(prompt)
76
+
77
+ # Gegenerate_llama_index_response last message is not from assistant
78
+ if st.session_state.messages[-1]["role"] != "assistant":
79
+ with st.chat_message("assistant"):
80
+ with st.spinner("Thinking..."):
81
+ response = generate_llama_index_response(prompt)
82
+ placeholder = st.empty()
83
+ placeholder.markdown(response)
84
+ message = {"role": "assistant", "content": response}
85
+ st.session_state.messages.append(message)
data/xtuner ADDED
@@ -0,0 +1 @@
 
 
1
+ Subproject commit 4cade9f547cbdf1ff5bada1c8a7f4a15a01c49ef
requirements.txt ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ einops==0.7.0
2
+ protobuf==5.26.1
3
+ llama-index==0.11.20
4
+ llama-index-llms-replicate==0.3.0
5
+ llama-index-llms-openai-like==0.2.0
6
+ llama-index-embeddings-huggingface==0.3.1
7
+ llama-index-embeddings-instructor==0.2.1
8
+ torch==2.5.0
9
+ torchvision==0.20.0
10
+ torchaudio==2.5.0
11
+ openai