File size: 5,826 Bytes
a88bb44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
from typing import List

import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from PIL import Image
from torchvision import transforms

from lbm.models.embedders import (
    ConditionerWrapper,
    LatentsConcatEmbedder,
    LatentsConcatEmbedderConfig,
)
from lbm.models.lbm import LBMConfig, LBMModel
from lbm.models.unets import DiffusersUNet2DCondWrapper
from lbm.models.vae import AutoencoderKLDiffusers, AutoencoderKLDiffusersConfig


def get_model_from_config(
    backbone_signature: str = "stabilityai/stable-diffusion-xl-base-1.0",
    vae_num_channels: int = 4,
    unet_input_channels: int = 4,
    timestep_sampling: str = "log_normal",
    selected_timesteps: List[float] = None,
    prob: List[float] = None,
    conditioning_images_keys: List[str] = [],
    conditioning_masks_keys: List[str] = ["mask"],
    source_key: str = "source_image",
    target_key: str = "source_image_paste",
    bridge_noise_sigma: float = 0.0,
):

    conditioners = []

    denoiser = DiffusersUNet2DCondWrapper(
        in_channels=unet_input_channels,  # Add downsampled_image
        out_channels=vae_num_channels,
        center_input_sample=False,
        flip_sin_to_cos=True,
        freq_shift=0,
        down_block_types=[
            "DownBlock2D",
            "CrossAttnDownBlock2D",
            "CrossAttnDownBlock2D",
        ],
        mid_block_type="UNetMidBlock2DCrossAttn",
        up_block_types=["CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"],
        only_cross_attention=False,
        block_out_channels=[320, 640, 1280],
        layers_per_block=2,
        downsample_padding=1,
        mid_block_scale_factor=1,
        dropout=0.0,
        act_fn="silu",
        norm_num_groups=32,
        norm_eps=1e-05,
        cross_attention_dim=[320, 640, 1280],
        transformer_layers_per_block=[1, 2, 10],
        reverse_transformer_layers_per_block=None,
        encoder_hid_dim=None,
        encoder_hid_dim_type=None,
        attention_head_dim=[5, 10, 20],
        num_attention_heads=None,
        dual_cross_attention=False,
        use_linear_projection=True,
        class_embed_type=None,
        addition_embed_type=None,
        addition_time_embed_dim=None,
        num_class_embeds=None,
        upcast_attention=None,
        resnet_time_scale_shift="default",
        resnet_skip_time_act=False,
        resnet_out_scale_factor=1.0,
        time_embedding_type="positional",
        time_embedding_dim=None,
        time_embedding_act_fn=None,
        timestep_post_act=None,
        time_cond_proj_dim=None,
        conv_in_kernel=3,
        conv_out_kernel=3,
        projection_class_embeddings_input_dim=None,
        attention_type="default",
        class_embeddings_concat=False,
        mid_block_only_cross_attention=None,
        cross_attention_norm=None,
        addition_embed_type_num_heads=64,
    ).to(torch.bfloat16)

    if conditioning_images_keys != [] or conditioning_masks_keys != []:

        latents_concat_embedder_config = LatentsConcatEmbedderConfig(
            image_keys=conditioning_images_keys,
            mask_keys=conditioning_masks_keys,
        )
        latent_concat_embedder = LatentsConcatEmbedder(latents_concat_embedder_config)
        latent_concat_embedder.freeze()
        conditioners.append(latent_concat_embedder)

        # Wrap conditioners and set to device
    conditioner = ConditionerWrapper(
        conditioners=conditioners,
    )

    ## VAE ##
    # Get VAE model
    vae_config = AutoencoderKLDiffusersConfig(
        version=backbone_signature,
        subfolder="vae",
        tiling_size=(128, 128),
    )
    vae = AutoencoderKLDiffusers(vae_config).to(torch.bfloat16)
    vae.freeze()
    vae.to(torch.bfloat16)

    ## Diffusion Model ##
    # Get diffusion model
    config = LBMConfig(
        source_key=source_key,
        target_key=target_key,
        timestep_sampling=timestep_sampling,
        selected_timesteps=selected_timesteps,
        prob=prob,
        bridge_noise_sigma=bridge_noise_sigma,
    )

    sampling_noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
        backbone_signature,
        subfolder="scheduler",
    )

    model = LBMModel(
        config,
        denoiser=denoiser,
        sampling_noise_scheduler=sampling_noise_scheduler,
        vae=vae,
        conditioner=conditioner,
    ).to(torch.bfloat16)

    return model


def extract_object(birefnet, img):
    # Data settings
    image_size = (1024, 1024)
    transform_image = transforms.Compose(
        [
            transforms.Resize(image_size),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )

    image = img
    input_images = transform_image(image).unsqueeze(0).cuda()

    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image.size)
    image = Image.composite(image, Image.new("RGB", image.size, (127, 127, 127)), mask)
    return image, mask


def resize_and_center_crop(image, target_width, target_height):
    original_width, original_height = image.size
    scale_factor = max(target_width / original_width, target_height / original_height)
    resized_width = int(round(original_width * scale_factor))
    resized_height = int(round(original_height * scale_factor))
    resized_image = image.resize((resized_width, resized_height), Image.LANCZOS)
    left = (resized_width - target_width) / 2
    top = (resized_height - target_height) / 2
    right = (resized_width + target_width) / 2
    bottom = (resized_height + target_height) / 2
    cropped_image = resized_image.crop((left, top, right, bottom))
    return cropped_image