Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,826 Bytes
a88bb44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import os
from typing import List
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from PIL import Image
from torchvision import transforms
from lbm.models.embedders import (
ConditionerWrapper,
LatentsConcatEmbedder,
LatentsConcatEmbedderConfig,
)
from lbm.models.lbm import LBMConfig, LBMModel
from lbm.models.unets import DiffusersUNet2DCondWrapper
from lbm.models.vae import AutoencoderKLDiffusers, AutoencoderKLDiffusersConfig
def get_model_from_config(
backbone_signature: str = "stabilityai/stable-diffusion-xl-base-1.0",
vae_num_channels: int = 4,
unet_input_channels: int = 4,
timestep_sampling: str = "log_normal",
selected_timesteps: List[float] = None,
prob: List[float] = None,
conditioning_images_keys: List[str] = [],
conditioning_masks_keys: List[str] = ["mask"],
source_key: str = "source_image",
target_key: str = "source_image_paste",
bridge_noise_sigma: float = 0.0,
):
conditioners = []
denoiser = DiffusersUNet2DCondWrapper(
in_channels=unet_input_channels, # Add downsampled_image
out_channels=vae_num_channels,
center_input_sample=False,
flip_sin_to_cos=True,
freq_shift=0,
down_block_types=[
"DownBlock2D",
"CrossAttnDownBlock2D",
"CrossAttnDownBlock2D",
],
mid_block_type="UNetMidBlock2DCrossAttn",
up_block_types=["CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"],
only_cross_attention=False,
block_out_channels=[320, 640, 1280],
layers_per_block=2,
downsample_padding=1,
mid_block_scale_factor=1,
dropout=0.0,
act_fn="silu",
norm_num_groups=32,
norm_eps=1e-05,
cross_attention_dim=[320, 640, 1280],
transformer_layers_per_block=[1, 2, 10],
reverse_transformer_layers_per_block=None,
encoder_hid_dim=None,
encoder_hid_dim_type=None,
attention_head_dim=[5, 10, 20],
num_attention_heads=None,
dual_cross_attention=False,
use_linear_projection=True,
class_embed_type=None,
addition_embed_type=None,
addition_time_embed_dim=None,
num_class_embeds=None,
upcast_attention=None,
resnet_time_scale_shift="default",
resnet_skip_time_act=False,
resnet_out_scale_factor=1.0,
time_embedding_type="positional",
time_embedding_dim=None,
time_embedding_act_fn=None,
timestep_post_act=None,
time_cond_proj_dim=None,
conv_in_kernel=3,
conv_out_kernel=3,
projection_class_embeddings_input_dim=None,
attention_type="default",
class_embeddings_concat=False,
mid_block_only_cross_attention=None,
cross_attention_norm=None,
addition_embed_type_num_heads=64,
).to(torch.bfloat16)
if conditioning_images_keys != [] or conditioning_masks_keys != []:
latents_concat_embedder_config = LatentsConcatEmbedderConfig(
image_keys=conditioning_images_keys,
mask_keys=conditioning_masks_keys,
)
latent_concat_embedder = LatentsConcatEmbedder(latents_concat_embedder_config)
latent_concat_embedder.freeze()
conditioners.append(latent_concat_embedder)
# Wrap conditioners and set to device
conditioner = ConditionerWrapper(
conditioners=conditioners,
)
## VAE ##
# Get VAE model
vae_config = AutoencoderKLDiffusersConfig(
version=backbone_signature,
subfolder="vae",
tiling_size=(128, 128),
)
vae = AutoencoderKLDiffusers(vae_config).to(torch.bfloat16)
vae.freeze()
vae.to(torch.bfloat16)
## Diffusion Model ##
# Get diffusion model
config = LBMConfig(
source_key=source_key,
target_key=target_key,
timestep_sampling=timestep_sampling,
selected_timesteps=selected_timesteps,
prob=prob,
bridge_noise_sigma=bridge_noise_sigma,
)
sampling_noise_scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
backbone_signature,
subfolder="scheduler",
)
model = LBMModel(
config,
denoiser=denoiser,
sampling_noise_scheduler=sampling_noise_scheduler,
vae=vae,
conditioner=conditioner,
).to(torch.bfloat16)
return model
def extract_object(birefnet, img):
# Data settings
image_size = (1024, 1024)
transform_image = transforms.Compose(
[
transforms.Resize(image_size),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image = img
input_images = transform_image(image).unsqueeze(0).cuda()
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
image = Image.composite(image, Image.new("RGB", image.size, (127, 127, 127)), mask)
return image, mask
def resize_and_center_crop(image, target_width, target_height):
original_width, original_height = image.size
scale_factor = max(target_width / original_width, target_height / original_height)
resized_width = int(round(original_width * scale_factor))
resized_height = int(round(original_height * scale_factor))
resized_image = image.resize((resized_width, resized_height), Image.LANCZOS)
left = (resized_width - target_width) / 2
top = (resized_height - target_height) / 2
right = (resized_width + target_width) / 2
bottom = (resized_height + target_height) / 2
cropped_image = resized_image.crop((left, top, right, bottom))
return cropped_image
|