Spaces:
Running
Running
File size: 9,326 Bytes
8c421fb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
# rag_interface.py (with numpy instead of faiss)
import streamlit as st
import pickle
import numpy as np
import rdflib
import torch
import datetime
import os
import requests
from rdflib import Graph as RDFGraph, Namespace
from sentence_transformers import SentenceTransformer
from dotenv import load_dotenv
# === CONFIGURATION ===
load_dotenv()
MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.3"
EMBEDDING_MODEL = "intfloat/multilingual-e5-base"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
EX = Namespace("http://example.org/lang/")
st.set_page_config(
page_title="Vanishing Voices: Language Atlas",
page_icon="π",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.header {
color: #2c3e50;
border-bottom: 2px solid #3498db;
padding-bottom: 10px;
margin-bottom: 1.5rem;
}
.info-box {
background-color: #e8f4fc;
border-radius: 8px;
padding: 1rem;
margin-bottom: 1.5rem;
border-left: 4px solid #3498db;
}
.sidebar-section {
margin-bottom: 2rem;
}
.sidebar-title {
color: #2c3e50;
font-size: 1.1rem;
font-weight: 600;
margin-bottom: 0.5rem;
border-bottom: 1px solid #eee;
padding-bottom: 0.5rem;
}
.method-card {
background-color: #f8f9fa;
border-radius: 8px;
padding: 0.8rem;
margin-bottom: 0.8rem;
border-left: 3px solid #3498db;
}
.method-title {
font-weight: 600;
color: #3498db;
margin-bottom: 0.3rem;
}
</style>
""", unsafe_allow_html=True)
@st.cache_resource(show_spinner="Loading models and indexes...")
def load_all_components():
embedder = SentenceTransformer(EMBEDDING_MODEL, device=DEVICE)
methods = {}
for label, suffix, ttl, matrix_path in [
("Standard", "", "grafo_ttl_no_hibrido.ttl", "embed_matrix.npy"),
("Hybrid", "_hybrid", "grafo_ttl_hibrido.ttl", "embed_matrix_hybrid.npy"),
("GraphSAGE", "_hybrid_graphsage", "grafo_ttl_hibrido_graphsage.ttl", "embed_matrix_hybrid_graphsage.npy")
]:
with open(f"id_map{suffix}.pkl", "rb") as f:
id_map = pickle.load(f)
with open(f"grafo_embed{suffix}.pickle", "rb") as f:
G = pickle.load(f)
matrix = np.load(matrix_path)
rdf = RDFGraph()
rdf.parse(ttl, format="ttl")
methods[label] = (matrix, id_map, G, rdf)
return methods, embedder
methods, embedder = load_all_components()
# === CORE FUNCTIONS ===
def get_top_k(matrix, id_map, query, k):
vec = embedder.encode(f"query: {query}", convert_to_tensor=True, device=DEVICE)
vec = vec.cpu().numpy().astype("float32")
sims = np.dot(matrix, vec) / (np.linalg.norm(matrix, axis=1) * np.linalg.norm(vec) + 1e-10)
top_k_idx = np.argsort(sims)[-k:][::-1]
return [id_map[i] for i in top_k_idx]
def get_context(G, lang_id):
node = G.nodes.get(lang_id, {})
lines = [f"**Language:** {node.get('label', lang_id)}"]
if node.get("wikipedia_summary"):
lines.append(f"**Wikipedia:** {node['wikipedia_summary']}")
if node.get("wikidata_description"):
lines.append(f"**Wikidata:** {node['wikidata_description']}")
if node.get("wikidata_countries"):
lines.append(f"**Countries:** {node['wikidata_countries']}")
return "\n\n".join(lines)
def query_rdf(rdf, lang_id):
q = f"""
PREFIX ex: <http://example.org/lang/>
SELECT ?property ?value WHERE {{ ex:{lang_id} ?property ?value }}
"""
try:
return [
(str(row[0]).split("/")[-1], str(row[1]))
for row in rdf.query(q)
]
except Exception as e:
return [("error", str(e))]
def generate_response(matrix, id_map, G, rdf, user_question, k=3):
ids = get_top_k(matrix, id_map, user_question, k)
context = [get_context(G, i) for i in ids]
rdf_facts = []
for i in ids:
rdf_facts.extend([f"{p}: {v}" for p, v in query_rdf(rdf, i)])
prompt = f"""<s>[INST]
You are an expert in South American indigenous languages.
Use strictly and only the information below to answer the user question in **English**.
- Do not infer or assume facts that are not explicitly stated.
- If the answer is unknown or insufficient, say "I cannot answer with the available data."
- Limit your answer to 100 words.
### CONTEXT:
{chr(10).join(context)}
### RDF RELATIONS:
{chr(10).join(rdf_facts)}
### QUESTION:
{user_question}
Answer:
[/INST]"""
try:
res = requests.post(
f"https://api-inference.huggingface.co/models/{MODEL_ID}",
headers={"Authorization": f"Bearer {os.getenv('HF_API_TOKEN')}", "Content-Type": "application/json"},
json={"inputs": prompt}, timeout=30
)
out = res.json()
if isinstance(out, list) and "generated_text" in out[0]:
return out[0]["generated_text"].replace(prompt.strip(), "").strip(), ids, context, rdf_facts
return str(out), ids, context, rdf_facts
except Exception as e:
return str(e), ids, context, rdf_facts
# === MAIN FUNCTION ===
def main():
st.markdown("""
<h1 class='header'>Vanishing Voices: South America's Endangered Language Atlas</h1>
<div class='info-box'>
<b>Linguistic Emergency:</b> Over 40% of South America's indigenous languages face extinction.
This tool documents these cultural treasures before they disappear forever.
</div>
""", unsafe_allow_html=True)
with st.sidebar:
st.image("https://glottolog.org/static/img/glottolog_lod.png", width=180)
with st.container():
st.markdown('<div class="sidebar-title">About This Tool</div>', unsafe_allow_html=True)
st.markdown("""
<div class="method-card">
<div class="method-title">Standard Search</div>
Semantic retrieval based on text-only embeddings. Identifies languages using purely linguistic similarity from Wikipedia summaries and labels.
</div>
<div class="method-card">
<div class="method-title">Hybrid Search</div>
Combines semantic embeddings with structured data from knowledge graphs. Enriches language representation with contextual facts.
</div>
<div class="method-card">
<div class="method-title">GraphSAGE Search</div>
Leverages deep graph neural networks to learn relational patterns across languages. Captures complex cultural and genealogical connections.
</div>
""", unsafe_allow_html=True)
with st.container():
st.markdown('<div class="sidebar-title">Research Settings</div>', unsafe_allow_html=True)
k = st.slider("Languages to analyze per query", 1, 10, 3)
st.markdown("**Display Options:**")
show_ids = st.checkbox("Language IDs", value=True, key="show_ids")
show_ctx = st.checkbox("Cultural Context", value=True, key="show_ctx")
show_rdf = st.checkbox("RDF Relations", value=True, key="show_rdf")
with st.container():
st.markdown('<div class="sidebar-title">Data Sources</div>', unsafe_allow_html=True)
st.markdown("""
- Glottolog
- Wikidata
- Wikipedia
- Ethnologue
""")
query = st.text_input("Ask about indigenous languages:", "Which Amazonian languages are most at risk?")
if st.button("Analyze with All Methods") and query:
col1, col2, col3 = st.columns(3)
results = {}
for col, (label, method) in zip([col1, col2, col3], methods.items()):
with col:
st.subheader(f"{label} Analysis")
start = datetime.datetime.now()
response, lang_ids, context, rdf_data = generate_response(*method, query, k)
duration = (datetime.datetime.now() - start).total_seconds()
st.markdown(response)
st.markdown(f"β±οΈ {duration:.2f}s | π {len(lang_ids)} languages")
if show_ids:
st.markdown("**Language Identifiers:**")
st.code("\n".join(lang_ids))
if show_ctx:
st.markdown("**Cultural Context:**")
st.markdown("\n\n---\n\n".join(context))
if show_rdf:
st.markdown("**RDF Knowledge:**")
st.code("\n".join(rdf_data))
results[label] = response
log = f"""
[{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}]
QUERY: {query}
STANDARD:
{results.get('Standard', '')}
HYBRID:
{results.get('Hybrid', '')}
GRAPH-SAGE:
{results.get('GraphSAGE', '')}
{'='*60}
"""
try:
with open("language_analysis_logs.txt", "a", encoding="utf-8") as f:
f.write(log)
except Exception as e:
st.warning(f"Failed to log: {str(e)}")
if __name__ == "__main__":
main()
|