import spaces import gradio as gr import time from threading import Thread import torch from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer model_id = "meta-llama/Llama-3.1-8B" assistant_id = "meta-llama/Llama-3.2-1B" model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True, device_map="auto") assistant_model = AutoModelForCausalLM.from_pretrained(assistant_id).to(device=model.device, dtype=torch.float16) tokenizer = AutoTokenizer.from_pretrained(model_id) @spaces.GPU def run_generation(user_text, use_assistant, temperature, max_new_tokens): if temperature < 0.1: do_sample = False else: do_sample = True # Get the model and tokenizer, and tokenize the user text. model_inputs = tokenizer([user_text], return_tensors="pt").to(model.device) # Start generation on a separate thread, so that we don't block the UI. The text is pulled from the streamer # in the main thread. Adds timeout to the streamer to handle exceptions in the generation thread. streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( model_inputs, assistant_model=assistant_model if use_assistant else None, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=do_sample, top_p=0.95, temperature=float(temperature), top_k=50, eos_token_id=-1, # ensures `max_new_tokens` new tokens are always generated, can't reach EOS ) t = Thread(target=model.generate, kwargs=generate_kwargs) start = time.time() t.start() # Pull the generated text from the streamer, and update the model output. Return the model output and time # spent so far. model_output = "" for new_text in streamer: model_output += new_text time_so_far = time.time() - start tokens_so_far = tokenizer(model_output, return_tensors="pt").input_ids.shape[1] yield [model_output, round(tokens_so_far/time_so_far, 2)] def reset_textbox(): return gr.update(value='') with gr.Blocks() as demo: gr.Markdown( "# 🤗 Assisted Generation Demo\n" f"- Model: {model_id} (4-bit quantization)\n" f"- Assistant Model: {assistant_id} (FP16)\n" "- Recipe for good speedup: a) >10x model size difference in parameters; b) assistant trained similarly; c) CPU is not a bottleneck" ) with gr.Row(): with gr.Column(scale=4): user_text = gr.Textbox( value="A sequence: one, two, three, ", label="Prompt" ) model_output = gr.Textbox(label="Model output", lines=10, interactive=False) button_submit = gr.Button(value="Submit") with gr.Column(scale=1, min_width=200): gr.Markdown("### Generation Settings") use_assistant = gr.Checkbox(label="Use Assisted Generation", value=True) max_new_tokens = gr.Slider( minimum=1, maximum=500, value=100, step=1, interactive=True, label="Max New Tokens", ) temperature = gr.Slider( minimum=0.0, maximum=2.0, value=0.6, step=0.05, interactive=True, label="Temperature (0.0 = Greedy)", ) gr.Markdown("### Tokens per second") tokens_per_second = gr.Textbox(lines=1, interactive=False, show_label=False) generate_inputs = [user_text, use_assistant, temperature, max_new_tokens] generate_outputs = [model_output, tokens_per_second] user_text.submit(run_generation, generate_inputs, generate_outputs) button_submit.click(run_generation, generate_inputs, generate_outputs) demo.queue(max_size=16).launch()