Spaces:
Runtime error
Runtime error
Upload val.py
Browse files
val.py
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import argparse
|
4 |
+
from tqdm.autonotebook import tqdm
|
5 |
+
import os
|
6 |
+
|
7 |
+
from utils import smp_metrics
|
8 |
+
from utils.utils import ConfusionMatrix, postprocess, scale_coords, process_batch, ap_per_class, fitness, \
|
9 |
+
save_checkpoint, DataLoaderX, BBoxTransform, ClipBoxes, boolean_string, Params
|
10 |
+
from backbone import HybridNetsBackbone
|
11 |
+
from hybridnets.dataset import BddDataset
|
12 |
+
from torchvision import transforms
|
13 |
+
|
14 |
+
|
15 |
+
@torch.no_grad()
|
16 |
+
def val(model, optimizer, val_generator, params, opt, writer, epoch, step, best_fitness, best_loss, best_epoch):
|
17 |
+
model.eval()
|
18 |
+
loss_regression_ls = []
|
19 |
+
loss_classification_ls = []
|
20 |
+
loss_segmentation_ls = []
|
21 |
+
jdict, stats, ap, ap_class = [], [], [], []
|
22 |
+
iou_thresholds = torch.linspace(0.5, 0.95, 10).cuda() # iou vector for [email protected]:0.95
|
23 |
+
num_thresholds = iou_thresholds.numel()
|
24 |
+
names = {i: v for i, v in enumerate(params.obj_list)}
|
25 |
+
nc = len(names)
|
26 |
+
seen = 0
|
27 |
+
confusion_matrix = ConfusionMatrix(nc=nc)
|
28 |
+
s = ('%15s' + '%11s' * 14) % (
|
29 |
+
'Class', 'Images', 'Labels', 'P', 'R', '[email protected]', '[email protected]:.95', 'mIoU', 'mF1', 'fIoU', 'sIoU', 'rIoU', 'rF1', 'lIoU', 'lF1')
|
30 |
+
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
31 |
+
iou_ls = [[] for _ in range(3)]
|
32 |
+
f1_ls = [[] for _ in range(3)]
|
33 |
+
regressBoxes = BBoxTransform()
|
34 |
+
clipBoxes = ClipBoxes()
|
35 |
+
|
36 |
+
val_loader = tqdm(val_generator)
|
37 |
+
for iter, data in enumerate(val_loader):
|
38 |
+
imgs = data['img']
|
39 |
+
annot = data['annot']
|
40 |
+
seg_annot = data['segmentation']
|
41 |
+
filenames = data['filenames']
|
42 |
+
shapes = data['shapes']
|
43 |
+
|
44 |
+
if opt.num_gpus == 1:
|
45 |
+
imgs = imgs.cuda()
|
46 |
+
annot = annot.cuda()
|
47 |
+
seg_annot = seg_annot.cuda()
|
48 |
+
|
49 |
+
cls_loss, reg_loss, seg_loss, regression, classification, anchors, segmentation = model(imgs, annot,
|
50 |
+
seg_annot,
|
51 |
+
obj_list=params.obj_list)
|
52 |
+
cls_loss = cls_loss.mean()
|
53 |
+
reg_loss = reg_loss.mean()
|
54 |
+
seg_loss = seg_loss.mean()
|
55 |
+
|
56 |
+
if opt.cal_map:
|
57 |
+
out = postprocess(imgs.detach(),
|
58 |
+
torch.stack([anchors[0]] * imgs.shape[0], 0).detach(), regression.detach(),
|
59 |
+
classification.detach(),
|
60 |
+
regressBoxes, clipBoxes,
|
61 |
+
0.001, 0.6) # 0.5, 0.3
|
62 |
+
|
63 |
+
for i in range(annot.size(0)):
|
64 |
+
seen += 1
|
65 |
+
labels = annot[i]
|
66 |
+
labels = labels[labels[:, 4] != -1]
|
67 |
+
|
68 |
+
ou = out[i]
|
69 |
+
nl = len(labels)
|
70 |
+
|
71 |
+
pred = np.column_stack([ou['rois'], ou['scores']])
|
72 |
+
pred = np.column_stack([pred, ou['class_ids']])
|
73 |
+
pred = torch.from_numpy(pred).cuda()
|
74 |
+
|
75 |
+
target_class = labels[:, 4].tolist() if nl else [] # target class
|
76 |
+
|
77 |
+
if len(pred) == 0:
|
78 |
+
if nl:
|
79 |
+
stats.append((torch.zeros(0, num_thresholds, dtype=torch.bool),
|
80 |
+
torch.Tensor(), torch.Tensor(), target_class))
|
81 |
+
# print("here")
|
82 |
+
continue
|
83 |
+
|
84 |
+
if nl:
|
85 |
+
pred[:, :4] = scale_coords(imgs[i][1:], pred[:, :4], shapes[i][0], shapes[i][1])
|
86 |
+
labels = scale_coords(imgs[i][1:], labels, shapes[i][0], shapes[i][1])
|
87 |
+
correct = process_batch(pred, labels, iou_thresholds)
|
88 |
+
if opt.plots:
|
89 |
+
confusion_matrix.process_batch(pred, labels)
|
90 |
+
else:
|
91 |
+
correct = torch.zeros(pred.shape[0], num_thresholds, dtype=torch.bool)
|
92 |
+
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), target_class))
|
93 |
+
|
94 |
+
# print(stats)
|
95 |
+
|
96 |
+
# Visualization
|
97 |
+
# seg_0 = segmentation[i]
|
98 |
+
# # print('bbb', seg_0.shape)
|
99 |
+
# seg_0 = torch.argmax(seg_0, dim = 0)
|
100 |
+
# # print('before', seg_0.shape)
|
101 |
+
# seg_0 = seg_0.cpu().numpy()
|
102 |
+
# #.transpose(1, 2, 0)
|
103 |
+
# # print(seg_0.shape)
|
104 |
+
# anh = np.zeros((384,640,3))
|
105 |
+
# anh[seg_0 == 0] = (255,0,0)
|
106 |
+
# anh[seg_0 == 1] = (0,255,0)
|
107 |
+
# anh[seg_0 == 2] = (0,0,255)
|
108 |
+
# anh = np.uint8(anh)
|
109 |
+
# cv2.imwrite('segmentation-{}.jpg'.format(filenames[i]),anh)
|
110 |
+
|
111 |
+
# Convert segmentation tensor --> 3 binary 0 1
|
112 |
+
# batch_size, num_classes, height, width
|
113 |
+
_, segmentation = torch.max(segmentation, 1)
|
114 |
+
# _, seg_annot = torch.max(seg_annot, 1)
|
115 |
+
seg = torch.zeros((seg_annot.size(0), 3, 384, 640), dtype=torch.int32)
|
116 |
+
seg[:, 0, ...][segmentation == 0] = 1
|
117 |
+
seg[:, 1, ...][segmentation == 1] = 1
|
118 |
+
seg[:, 2, ...][segmentation == 2] = 1
|
119 |
+
|
120 |
+
tp_seg, fp_seg, fn_seg, tn_seg = smp_metrics.get_stats(seg.cuda(), seg_annot.long().cuda(),
|
121 |
+
mode='multilabel', threshold=None)
|
122 |
+
|
123 |
+
iou = smp_metrics.iou_score(tp_seg, fp_seg, fn_seg, tn_seg, reduction='none')
|
124 |
+
# print(iou)
|
125 |
+
f1 = smp_metrics.balanced_accuracy(tp_seg, fp_seg, fn_seg, tn_seg, reduction='none')
|
126 |
+
|
127 |
+
for i in range(len(params.seg_list) + 1):
|
128 |
+
iou_ls[i].append(iou.T[i].detach().cpu().numpy())
|
129 |
+
f1_ls[i].append(f1.T[i].detach().cpu().numpy())
|
130 |
+
|
131 |
+
loss = cls_loss + reg_loss + seg_loss
|
132 |
+
if loss == 0 or not torch.isfinite(loss):
|
133 |
+
continue
|
134 |
+
|
135 |
+
loss_classification_ls.append(cls_loss.item())
|
136 |
+
loss_regression_ls.append(reg_loss.item())
|
137 |
+
loss_segmentation_ls.append(seg_loss.item())
|
138 |
+
|
139 |
+
cls_loss = np.mean(loss_classification_ls)
|
140 |
+
reg_loss = np.mean(loss_regression_ls)
|
141 |
+
seg_loss = np.mean(loss_segmentation_ls)
|
142 |
+
loss = cls_loss + reg_loss + seg_loss
|
143 |
+
|
144 |
+
print(
|
145 |
+
'Val. Epoch: {}/{}. Classification loss: {:1.5f}. Regression loss: {:1.5f}. Segmentation loss: {:1.5f}. Total loss: {:1.5f}'.format(
|
146 |
+
epoch, opt.num_epochs, cls_loss, reg_loss, seg_loss, loss))
|
147 |
+
writer.add_scalars('Loss', {'val': loss}, step)
|
148 |
+
writer.add_scalars('Regression_loss', {'val': reg_loss}, step)
|
149 |
+
writer.add_scalars('Classfication_loss', {'val': cls_loss}, step)
|
150 |
+
writer.add_scalars('Segmentation_loss', {'val': seg_loss}, step)
|
151 |
+
|
152 |
+
if opt.cal_map:
|
153 |
+
# print(len(iou_ls[0]))
|
154 |
+
iou_score = np.mean(iou_ls)
|
155 |
+
# print(iou_score)
|
156 |
+
f1_score = np.mean(f1_ls)
|
157 |
+
|
158 |
+
iou_first_decoder = iou_ls[0] + iou_ls[1]
|
159 |
+
iou_first_decoder = np.mean(iou_first_decoder)
|
160 |
+
|
161 |
+
iou_second_decoder = iou_ls[0] + iou_ls[2]
|
162 |
+
iou_second_decoder = np.mean(iou_second_decoder)
|
163 |
+
|
164 |
+
for i in range(len(params.seg_list) + 1):
|
165 |
+
iou_ls[i] = np.mean(iou_ls[i])
|
166 |
+
f1_ls[i] = np.mean(f1_ls[i])
|
167 |
+
|
168 |
+
# Compute statistics
|
169 |
+
stats = [np.concatenate(x, 0) for x in zip(*stats)]
|
170 |
+
# print(stats[3])
|
171 |
+
|
172 |
+
# Count detected boxes per class
|
173 |
+
# boxes_per_class = np.bincount(stats[2].astype(np.int64), minlength=1)
|
174 |
+
|
175 |
+
ap50 = None
|
176 |
+
save_dir = 'plots'
|
177 |
+
os.makedirs(save_dir, exist_ok=True)
|
178 |
+
|
179 |
+
# Compute metrics
|
180 |
+
if len(stats) and stats[0].any():
|
181 |
+
p, r, f1, ap, ap_class = ap_per_class(*stats, plot=opt.plots, save_dir=save_dir, names=names)
|
182 |
+
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
|
183 |
+
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
184 |
+
nt = np.bincount(stats[3].astype(np.int64), minlength=1) # number of targets per class
|
185 |
+
else:
|
186 |
+
nt = torch.zeros(1)
|
187 |
+
|
188 |
+
# Print results
|
189 |
+
print(s)
|
190 |
+
pf = '%15s' + '%11i' * 2 + '%11.3g' * 12 # print format
|
191 |
+
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map, iou_score, f1_score, iou_first_decoder, iou_second_decoder,
|
192 |
+
iou_ls[1], f1_ls[1], iou_ls[2], f1_ls[2]))
|
193 |
+
|
194 |
+
# Print results per class
|
195 |
+
training = True
|
196 |
+
if (opt.verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
|
197 |
+
for i, c in enumerate(ap_class):
|
198 |
+
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
199 |
+
|
200 |
+
# Plots
|
201 |
+
if opt.plots:
|
202 |
+
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
203 |
+
confusion_matrix.tp_fp()
|
204 |
+
|
205 |
+
results = (mp, mr, map50, map, iou_score, f1_score, loss)
|
206 |
+
fi = fitness(
|
207 |
+
np.array(results).reshape(1, -1)) # weighted combination of [P, R, [email protected], [email protected], iou, f1, loss ]
|
208 |
+
|
209 |
+
# if calculating map, save by best fitness
|
210 |
+
if fi > best_fitness:
|
211 |
+
best_fitness = fi
|
212 |
+
ckpt = {'epoch': epoch,
|
213 |
+
'step': step,
|
214 |
+
'best_fitness': best_fitness,
|
215 |
+
'model': model,
|
216 |
+
'optimizer': optimizer.state_dict()}
|
217 |
+
print("Saving checkpoint with best fitness", fi[0])
|
218 |
+
save_checkpoint(ckpt, opt.saved_path, f'hybridnets-d{opt.compound_coef}_{epoch}_{step}_best.pth')
|
219 |
+
else:
|
220 |
+
# if not calculating map, save by best loss
|
221 |
+
if loss + opt.es_min_delta < best_loss:
|
222 |
+
best_loss = loss
|
223 |
+
best_epoch = epoch
|
224 |
+
|
225 |
+
save_checkpoint(model, opt.saved_path, f'hybridnets-d{opt.compound_coef}_{epoch}_{step}_best.pth')
|
226 |
+
|
227 |
+
# Early stopping
|
228 |
+
if epoch - best_epoch > opt.es_patience > 0:
|
229 |
+
print('[Info] Stop training at epoch {}. The lowest loss achieved is {}'.format(epoch, best_loss))
|
230 |
+
writer.close()
|
231 |
+
exit(0)
|
232 |
+
|
233 |
+
model.train()
|
234 |
+
return best_fitness, best_loss, best_epoch
|
235 |
+
|
236 |
+
|
237 |
+
@torch.no_grad()
|
238 |
+
def val_from_cmd(model, val_generator, params, opt):
|
239 |
+
model.eval()
|
240 |
+
jdict, stats, ap, ap_class = [], [], [], []
|
241 |
+
iou_thresholds = torch.linspace(0.5, 0.95, 10).cuda() # iou vector for [email protected]:0.95
|
242 |
+
num_thresholds = iou_thresholds.numel()
|
243 |
+
names = {i: v for i, v in enumerate(params.obj_list)}
|
244 |
+
nc = len(names)
|
245 |
+
seen = 0
|
246 |
+
confusion_matrix = ConfusionMatrix(nc=nc)
|
247 |
+
s = ('%15s' + '%11s' * 14) % (
|
248 |
+
'Class', 'Images', 'Labels', 'P', 'R', '[email protected]', '[email protected]:.95', 'mIoU', 'mF1', 'fIoU', 'sIoU', 'rIoU', 'rF1', 'lIoU', 'lF1')
|
249 |
+
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
|
250 |
+
iou_ls = [[] for _ in range(3)]
|
251 |
+
f1_ls = [[] for _ in range(3)]
|
252 |
+
regressBoxes = BBoxTransform()
|
253 |
+
clipBoxes = ClipBoxes()
|
254 |
+
|
255 |
+
val_loader = tqdm(val_generator)
|
256 |
+
for iter, data in enumerate(val_loader):
|
257 |
+
imgs = data['img']
|
258 |
+
annot = data['annot']
|
259 |
+
seg_annot = data['segmentation']
|
260 |
+
filenames = data['filenames']
|
261 |
+
shapes = data['shapes']
|
262 |
+
|
263 |
+
if opt.num_gpus == 1:
|
264 |
+
imgs = imgs.cuda()
|
265 |
+
annot = annot.cuda()
|
266 |
+
seg_annot = seg_annot.cuda()
|
267 |
+
|
268 |
+
features, regressions, classifications, anchors, segmentation = model(imgs)
|
269 |
+
|
270 |
+
out = postprocess(imgs.detach(),
|
271 |
+
torch.stack([anchors[0]] * imgs.shape[0], 0).detach(), regressions.detach(),
|
272 |
+
classifications.detach(),
|
273 |
+
regressBoxes, clipBoxes,
|
274 |
+
0.001, 0.6) # 0.5, 0.3
|
275 |
+
|
276 |
+
# imgs = imgs.permute(0, 2, 3, 1).cpu().numpy()
|
277 |
+
# imgs = ((imgs * [0.229, 0.224, 0.225] + [0.485, 0.456, 0.406]) * 255).astype(np.uint8)
|
278 |
+
# imgs = [cv2.cvtColor(img, cv2.COLOR_RGB2BGR) for img in imgs]
|
279 |
+
# display(out, imgs, ['car'], imshow=False, imwrite=True)
|
280 |
+
|
281 |
+
# for index, filename in enumerate(filenames):
|
282 |
+
# ori_img = cv2.imread('datasets/bdd100k/val/'+filename)
|
283 |
+
# if len(out[index]['rois']):
|
284 |
+
# for roi in out[index]['rois']:
|
285 |
+
# x1,y1,x2,y2 = [int(x) for x in roi]
|
286 |
+
# cv2.rectangle(ori_img, (x1,y1), (x2,y2), (255,0,0), 1)
|
287 |
+
# cv2.imwrite(filename, ori_img)
|
288 |
+
|
289 |
+
for i in range(annot.size(0)):
|
290 |
+
seen += 1
|
291 |
+
labels = annot[i]
|
292 |
+
labels = labels[labels[:, 4] != -1]
|
293 |
+
|
294 |
+
ou = out[i]
|
295 |
+
nl = len(labels)
|
296 |
+
|
297 |
+
pred = np.column_stack([ou['rois'], ou['scores']])
|
298 |
+
pred = np.column_stack([pred, ou['class_ids']])
|
299 |
+
pred = torch.from_numpy(pred).cuda()
|
300 |
+
|
301 |
+
target_class = labels[:, 4].tolist() if nl else [] # target class
|
302 |
+
|
303 |
+
if len(pred) == 0:
|
304 |
+
if nl:
|
305 |
+
stats.append((torch.zeros(0, num_thresholds, dtype=torch.bool),
|
306 |
+
torch.Tensor(), torch.Tensor(), target_class))
|
307 |
+
# print("here")
|
308 |
+
continue
|
309 |
+
|
310 |
+
if nl:
|
311 |
+
pred[:, :4] = scale_coords(imgs[i][1:], pred[:, :4], shapes[i][0], shapes[i][1])
|
312 |
+
|
313 |
+
labels = scale_coords(imgs[i][1:], labels, shapes[i][0], shapes[i][1])
|
314 |
+
|
315 |
+
# ori_img = cv2.imread('datasets/bdd100k_effdet/val/' + filenames[i],
|
316 |
+
# cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION | cv2.IMREAD_UNCHANGED)
|
317 |
+
# for label in labels:
|
318 |
+
# x1, y1, x2, y2 = [int(x) for x in label[:4]]
|
319 |
+
# ori_img = cv2.rectangle(ori_img, (x1, y1), (x2, y2), (255, 0, 0), 1)
|
320 |
+
# for pre in pred:
|
321 |
+
# x1, y1, x2, y2 = [int(x) for x in pre[:4]]
|
322 |
+
# # ori_img = cv2.putText(ori_img, str(pre[4].cpu().numpy()), (x1 - 10, y1 - 10),
|
323 |
+
# # cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1, cv2.LINE_AA)
|
324 |
+
# ori_img = cv2.rectangle(ori_img, (x1, y1), (x2, y2), (0, 255, 0), 1)
|
325 |
+
|
326 |
+
# cv2.imwrite('pre+label-{}.jpg'.format(filenames[i]), ori_img)
|
327 |
+
correct = process_batch(pred, labels, iou_thresholds)
|
328 |
+
if opt.plots:
|
329 |
+
confusion_matrix.process_batch(pred, labels)
|
330 |
+
else:
|
331 |
+
correct = torch.zeros(pred.shape[0], num_thresholds, dtype=torch.bool)
|
332 |
+
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), target_class))
|
333 |
+
|
334 |
+
# print(stats)
|
335 |
+
|
336 |
+
# Visualization
|
337 |
+
# seg_0 = segmentation[i]
|
338 |
+
# # print('bbb', seg_0.shape)
|
339 |
+
# seg_0 = torch.argmax(seg_0, dim = 0)
|
340 |
+
# # print('before', seg_0.shape)
|
341 |
+
# seg_0 = seg_0.cpu().numpy()
|
342 |
+
# #.transpose(1, 2, 0)
|
343 |
+
# # print(seg_0.shape)
|
344 |
+
# anh = np.zeros((384,640,3))
|
345 |
+
# anh[seg_0 == 0] = (255,0,0)
|
346 |
+
# anh[seg_0 == 1] = (0,255,0)
|
347 |
+
# anh[seg_0 == 2] = (0,0,255)
|
348 |
+
# anh = np.uint8(anh)
|
349 |
+
# cv2.imwrite('segmentation-{}.jpg'.format(filenames[i]),anh)
|
350 |
+
|
351 |
+
# Convert segmentation tensor --> 3 binary 0 1
|
352 |
+
# batch_size, num_classes, height, width
|
353 |
+
_, segmentation = torch.max(segmentation, 1)
|
354 |
+
# _, seg_annot = torch.max(seg_annot, 1)
|
355 |
+
seg = torch.zeros((seg_annot.size(0), 3, 384, 640), dtype=torch.int32)
|
356 |
+
seg[:, 0, ...][segmentation == 0] = 1
|
357 |
+
seg[:, 1, ...][segmentation == 1] = 1
|
358 |
+
seg[:, 2, ...][segmentation == 2] = 1
|
359 |
+
|
360 |
+
tp_seg, fp_seg, fn_seg, tn_seg = smp_metrics.get_stats(seg.cuda(), seg_annot.long().cuda(), mode='multilabel',
|
361 |
+
threshold=None)
|
362 |
+
|
363 |
+
iou = smp_metrics.iou_score(tp_seg, fp_seg, fn_seg, tn_seg, reduction='none')
|
364 |
+
# print(iou)
|
365 |
+
f1 = smp_metrics.balanced_accuracy(tp_seg, fp_seg, fn_seg, tn_seg, reduction='none')
|
366 |
+
|
367 |
+
for i in range(len(params.seg_list) + 1):
|
368 |
+
iou_ls[i].append(iou.T[i].detach().cpu().numpy())
|
369 |
+
f1_ls[i].append(f1.T[i].detach().cpu().numpy())
|
370 |
+
|
371 |
+
# Visualize
|
372 |
+
# for i in range(segmentation.size(0)):
|
373 |
+
# if iou_ls[1][iter][i] < 0.4:
|
374 |
+
# import cv2
|
375 |
+
#
|
376 |
+
# ori = cv2.imread('datasets/bdd100k/val/{}'.format(filenames[i]))
|
377 |
+
# cv2.imwrite('ori-segmentation-{}-{}.jpg'.format(iter,filenames[i]),ori)
|
378 |
+
#
|
379 |
+
# gt = seg_annot[i].detach()
|
380 |
+
# gt = torch.argmax(gt, dim = 0).cpu().numpy()
|
381 |
+
#
|
382 |
+
# anh = np.zeros((384,640,3))
|
383 |
+
# anh[gt == 0] = (255,0,0)
|
384 |
+
# anh[gt == 1] = (0,255,0)
|
385 |
+
# anh[gt == 2] = (0,0,255)
|
386 |
+
# cv2.imwrite('gt-segmentation-{}-{}.jpg'.format(iter,filenames[i]),anh)
|
387 |
+
#
|
388 |
+
# seg_0 = seg[i]
|
389 |
+
# seg_0 = torch.argmax(seg_0, dim = 0)
|
390 |
+
# seg_0 = seg_0.cpu().numpy()
|
391 |
+
# anh = np.zeros((384,640,3))
|
392 |
+
# anh[seg_0 == 0] = (255,0,0)
|
393 |
+
# anh[seg_0 == 1] = (0,255,0)
|
394 |
+
# anh[seg_0 == 2] = (0,0,255)
|
395 |
+
# anh = np.uint8(anh)
|
396 |
+
# cv2.imwrite('segmentation-{}-{}.jpg'.format(iter,filenames[i]),anh)
|
397 |
+
|
398 |
+
# print(len(iou_ls[0]))
|
399 |
+
# print(iou_ls)
|
400 |
+
iou_score = np.mean(iou_ls)
|
401 |
+
# print(iou_score)
|
402 |
+
f1_score = np.mean(f1_ls)
|
403 |
+
|
404 |
+
iou_first_decoder = iou_ls[0] + iou_ls[1]
|
405 |
+
iou_first_decoder = np.mean(iou_first_decoder)
|
406 |
+
|
407 |
+
iou_second_decoder = iou_ls[0] + iou_ls[2]
|
408 |
+
iou_second_decoder = np.mean(iou_second_decoder)
|
409 |
+
|
410 |
+
for i in range(len(params.seg_list) + 1):
|
411 |
+
iou_ls[i] = np.mean(iou_ls[i])
|
412 |
+
f1_ls[i] = np.mean(f1_ls[i])
|
413 |
+
|
414 |
+
# Compute statistics
|
415 |
+
stats = [np.concatenate(x, 0) for x in zip(*stats)]
|
416 |
+
|
417 |
+
# Count detected boxes per class
|
418 |
+
# boxes_per_class = np.bincount(stats[2].astype(np.int64), minlength=1)
|
419 |
+
|
420 |
+
ap50 = None
|
421 |
+
save_dir = 'plots'
|
422 |
+
os.makedirs(save_dir, exist_ok=True)
|
423 |
+
|
424 |
+
# Compute metrics
|
425 |
+
if len(stats) and stats[0].any():
|
426 |
+
p, r, f1, ap, ap_class = ap_per_class(*stats, plot=opt.plots, save_dir=save_dir, names=names)
|
427 |
+
ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
|
428 |
+
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
|
429 |
+
nt = np.bincount(stats[3].astype(np.int64), minlength=1) # number of targets per class
|
430 |
+
else:
|
431 |
+
nt = torch.zeros(1)
|
432 |
+
|
433 |
+
# Print results
|
434 |
+
print(s)
|
435 |
+
pf = '%15s' + '%11i' * 2 + '%11.3g' * 12 # print format
|
436 |
+
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map, iou_score, f1_score, iou_first_decoder, iou_second_decoder,
|
437 |
+
iou_ls[1], f1_ls[1], iou_ls[2], f1_ls[2]))
|
438 |
+
|
439 |
+
# Print results per class
|
440 |
+
training = False
|
441 |
+
if (opt.verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
|
442 |
+
for i, c in enumerate(ap_class):
|
443 |
+
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
|
444 |
+
|
445 |
+
# Plots
|
446 |
+
if opt.plots:
|
447 |
+
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
|
448 |
+
confusion_matrix.tp_fp()
|
449 |
+
|
450 |
+
|
451 |
+
if __name__ == "__main__":
|
452 |
+
ap = argparse.ArgumentParser()
|
453 |
+
ap.add_argument('-p', '--project', type=str, default='coco', help='Project file that contains parameters')
|
454 |
+
ap.add_argument('-c', '--compound_coef', type=int, default=0, help='Coefficients of efficientnet backbone')
|
455 |
+
ap.add_argument('-w', '--weights', type=str, default=None, help='/path/to/weights')
|
456 |
+
ap.add_argument('-n', '--num_workers', type=int, default=12, help='Num_workers of dataloader')
|
457 |
+
ap.add_argument('--batch_size', type=int, default=12, help='The number of images per batch among all devices')
|
458 |
+
ap.add_argument('-v', '--verbose', type=boolean_string, default=True,
|
459 |
+
help='Whether to print results per class when valing')
|
460 |
+
ap.add_argument('--plots', type=boolean_string, default=True,
|
461 |
+
help='Whether to plot confusion matrix when valing')
|
462 |
+
ap.add_argument('--num_gpus', type=int, default=1,
|
463 |
+
help='Number of GPUs to be used (0 to use CPU)')
|
464 |
+
args = ap.parse_args()
|
465 |
+
|
466 |
+
compound_coef = args.compound_coef
|
467 |
+
project_name = args.project
|
468 |
+
weights_path = f'weights/hybridnets-d{compound_coef}.pth' if args.weights is None else args.weights
|
469 |
+
|
470 |
+
params = Params(f'projects/{project_name}.yml')
|
471 |
+
obj_list = params.obj_list
|
472 |
+
|
473 |
+
valid_dataset = BddDataset(
|
474 |
+
params=params,
|
475 |
+
is_train=False,
|
476 |
+
inputsize=params.model['image_size'],
|
477 |
+
transform=transforms.Compose([
|
478 |
+
transforms.ToTensor(),
|
479 |
+
transforms.Normalize(
|
480 |
+
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
481 |
+
)
|
482 |
+
])
|
483 |
+
)
|
484 |
+
|
485 |
+
val_generator = DataLoaderX(
|
486 |
+
valid_dataset,
|
487 |
+
batch_size=args.batch_size,
|
488 |
+
shuffle=False,
|
489 |
+
num_workers=args.num_workers,
|
490 |
+
pin_memory=params.pin_memory,
|
491 |
+
collate_fn=BddDataset.collate_fn
|
492 |
+
)
|
493 |
+
|
494 |
+
model = HybridNetsBackbone(compound_coef=compound_coef, num_classes=len(params.obj_list),
|
495 |
+
ratios=eval(params.anchors_ratios), scales=eval(params.anchors_scales),
|
496 |
+
seg_classes=len(params.seg_list))
|
497 |
+
|
498 |
+
# print(model)
|
499 |
+
try:
|
500 |
+
model.load_state_dict(torch.load(weights_path))
|
501 |
+
except:
|
502 |
+
model.load_state_dict(torch.load(weights_path)['model'])
|
503 |
+
model.requires_grad_(False)
|
504 |
+
|
505 |
+
if args.num_gpus > 0:
|
506 |
+
model.cuda()
|
507 |
+
|
508 |
+
val_from_cmd(model, val_generator, params, args)
|