Spaces:
Sleeping
Sleeping
Commit
·
7077c22
1
Parent(s):
0c6a823
Uploading the demo
Browse files- README.md +4 -4
- app.py +64 -0
- requirements.txt +4 -0
- run_model.py +36 -0
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.41.1
|
8 |
app_file: app.py
|
|
|
1 |
---
|
2 |
+
title: Llm Medical
|
3 |
+
emoji: 🏆
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: green
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.41.1
|
8 |
app_file: app.py
|
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Hugging Face repository details
|
6 |
+
MODEL_ID = "meta-llama/CodeLlama-7b-Instruct-hf"
|
7 |
+
|
8 |
+
def load_model():
|
9 |
+
"""Load the Hugging Face model and tokenizer."""
|
10 |
+
try:
|
11 |
+
st.write("Loading model and tokenizer...")
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(
|
14 |
+
MODEL_ID, device_map="auto", torch_dtype=torch.float16
|
15 |
+
)
|
16 |
+
st.write("Model and tokenizer successfully loaded.")
|
17 |
+
return tokenizer, model
|
18 |
+
except Exception as e:
|
19 |
+
st.error(f"Error loading model: {e}")
|
20 |
+
return None, None
|
21 |
+
|
22 |
+
# Load the model and tokenizer
|
23 |
+
@st.cache_resource
|
24 |
+
def get_model():
|
25 |
+
return load_model()
|
26 |
+
|
27 |
+
tokenizer, model = get_model()
|
28 |
+
|
29 |
+
# Streamlit UI
|
30 |
+
st.title("Medical Chatbot")
|
31 |
+
st.write("This chatbot provides medical assistance. Type your question below!")
|
32 |
+
|
33 |
+
if model is None or tokenizer is None:
|
34 |
+
st.error("Model failed to load. Please check the Hugging Face model path or environment configuration.")
|
35 |
+
else:
|
36 |
+
user_input = st.text_input("You:", placeholder="Enter your medical question here...", key="input_box")
|
37 |
+
|
38 |
+
if st.button("Send"):
|
39 |
+
if user_input.strip():
|
40 |
+
# Construct the prompt
|
41 |
+
SYSTEM_PROMPT = "You are a helpful medical assistant. Provide accurate and concise answers."
|
42 |
+
full_prompt = f"{SYSTEM_PROMPT}\nUser: {user_input}\nAssistant:"
|
43 |
+
|
44 |
+
# Tokenize the input
|
45 |
+
inputs = tokenizer(full_prompt, return_tensors="pt", truncation=True).to("cuda")
|
46 |
+
|
47 |
+
try:
|
48 |
+
# Generate the response
|
49 |
+
outputs = model.generate(
|
50 |
+
inputs["input_ids"],
|
51 |
+
max_length=200, # Limit response length
|
52 |
+
temperature=0.7, # Control randomness
|
53 |
+
top_p=0.9, # Top-p sampling
|
54 |
+
pad_token_id=tokenizer.eos_token_id
|
55 |
+
)
|
56 |
+
|
57 |
+
# Decode and display the response
|
58 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True).split("Assistant:")[-1].strip()
|
59 |
+
st.write(f"**Model:** {response}")
|
60 |
+
|
61 |
+
except Exception as e:
|
62 |
+
st.error(f"Error generating response: {e}")
|
63 |
+
else:
|
64 |
+
st.warning("Please enter a valid question.")
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
llama-cpp-python
|
3 |
+
huggingface-hub
|
4 |
+
|
run_model.py
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from llama_cpp import Llama
|
2 |
+
|
3 |
+
# Path to the GGUF model file
|
4 |
+
MODEL_PATH = "llama-3.1-8B.gguf"
|
5 |
+
|
6 |
+
# Load the model
|
7 |
+
print("Loading the model...")
|
8 |
+
try:
|
9 |
+
llama = Llama(model_path=MODEL_PATH, n_ctx=1024, n_threads=4)
|
10 |
+
print("Model loaded successfully!")
|
11 |
+
except Exception as e:
|
12 |
+
print(f"Failed to load the model: {e}")
|
13 |
+
exit(1)
|
14 |
+
|
15 |
+
# Chat loop
|
16 |
+
print("Chat with the model! Type 'exit' to end the conversation.")
|
17 |
+
while True:
|
18 |
+
user_input = input("You: ").strip()
|
19 |
+
if user_input.lower() == "exit":
|
20 |
+
print("Exiting chat. Goodbye!")
|
21 |
+
break
|
22 |
+
|
23 |
+
# Query the model
|
24 |
+
print("Thinking...")
|
25 |
+
response = llama(
|
26 |
+
user_input,
|
27 |
+
max_tokens=50, # Limit response length
|
28 |
+
temperature=0.7, # Control randomness
|
29 |
+
top_p=0.9, # Top-p sampling
|
30 |
+
stop=["You:"] # Stop at the next user prompt
|
31 |
+
)
|
32 |
+
|
33 |
+
# Extract and clean response text
|
34 |
+
response_text = response['choices'][0]['text'].strip()
|
35 |
+
print(f"Model: {response_text}")
|
36 |
+
|