Spaces:
Running
Running
File size: 8,382 Bytes
87e31cc ea96b66 51352c6 ea96b66 ab7d699 ea96b66 ab7d699 ea96b66 ab7d699 51352c6 ab7d699 51352c6 ab7d699 ea96b66 ab7d699 ea96b66 ab7d699 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import os
os.system("pip install ./MultiScaleDeformableAttention-1.0-py3-none-any.whl")
import gradio as gr
from huggingface_hub import hf_hub_download
import numpy as np
import numpy as np
import torch
import matplotlib.pyplot as plt
import cv2
from PIL import Image
import torch.nn as nn
from torch.autograd import Variable
from torchvision import transforms
import torch.nn.functional as F
import gdown
import os
from io import BytesIO
from IS_Net.data_loader import normalize, im_reader, im_preprocess
from IS_Net.models.isnet import ISNetGTEncoder, ISNetDIS
from SAM.segment_anything import sam_model_registry, SamPredictor
device = "cuda" if torch.cuda.is_available() else "cpu"
def show_gray_images(images, m=8, alpha=3):
n, h, w = images.shape
num_rows = (n + m - 1) // m
fig, axes = plt.subplots(num_rows, m, figsize=(m * 2*alpha, num_rows * 2*alpha))
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(num_rows):
for j in range(m):
idx = i*m + j
if m == 1 or num_rows == 1:
axes[idx].imshow(images[idx], cmap='gray')
axes[idx].axis('off')
elif idx < n:
axes[i, j].imshow(images[idx], cmap='gray')
axes[i, j].axis('off')
plt.show()
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
sam_checkpoint = hf_hub_download(repo_id="andzhang01/segment-anything", filename="sam_vit_l_0b3195.pth")
# sam_checkpoint = r"~/.cache/huggingface/hub/models--andzhang01--segment-anything/sam_vit_l_0b3195.pth"
model_type = "vit_l"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint, device=device)
sam.to(device=device)
predictor = SamPredictor(sam)
class GOSNormalize(object):
'''
Normalize the Image using torch.transforms
'''
def __init__(self, mean=[0.485,0.456,0.406,0], std=[0.229,0.224,0.225,1.0]):
self.mean = mean
self.std = std
def __call__(self,image):
image = normalize(image,self.mean,self.std)
return image
transform = transforms.Compose([GOSNormalize([0.5,0.5,0.5,0,0],[1.0,1.0,1.0,1.0,1.0])])
def build_model(hypar,device):
net = hypar["model"]#GOSNETINC(3,1)
# convert to half precision
if(hypar["model_digit"]=="half"):
net.half()
for layer in net.modules():
if isinstance(layer, nn.BatchNorm2d):
layer.float()
net.to(device)
if(hypar["restore_model"]!=""):
net.load_state_dict(torch.load(hypar["model_path"]+"/"+hypar["restore_model"],map_location=device))
net.to(device)
net.eval()
return net
def get_box(input_box,size):
# 初始化一个全零的图像
image = torch.zeros(size)
# 填充方框区域为白色(值为255)
image[input_box[1]:input_box[3],input_box[0]:input_box[2]] = 255
return image
def get_box_from_mask(gt):
gt = torch.from_numpy(np.array(gt))
box = torch.zeros_like(gt)+gt
box = box.float()
rows, cols = torch.where(box>0)
left = torch.min(cols)
top = torch.min(rows)
right = torch.max(cols)
bottom = torch.max(rows)
box[top:bottom,left:right] = 255
box[box!=255] = 0
return box
def predict_one(net, image, mask, box, transforms, hypar, device):
'''
Given an Image, predict the mask
'''
with torch.no_grad():
image = torch.from_numpy(np.array(image))
mask = torch.from_numpy(np.array(mask))
box = torch.from_numpy(np.array(box))
if mask.max()==1:
mask = mask.type(torch.float32)*255.0
# for i in [image,mask[...,None],box[...,None]]:
# print(i.shape)
inputs_val_v = torch.cat([image,mask[...,None],box[...,None]],dim=2)
inputs_val_v = inputs_val_v.permute(2,0,1)[None,...]
shapes_val = inputs_val_v.shape[-2:]
inputs_val_v = F.upsample(inputs_val_v,(hypar["input_size"]),mode='bilinear')
box = inputs_val_v[0][-1]
box[box>127] = 255
box[box<=127] = 0
inputs_val_v[0][-1] = box
# plt.imshow(inputs_val_v[0][-1])
# plt.show()
inputs_val_v = inputs_val_v.divide(255.0)
# print(shapes_val)
net.eval()
if(hypar["model_digit"]=="full"):
inputs_val_v = inputs_val_v.type(torch.FloatTensor)
else:
inputs_val_v = inputs_val_v.type(torch.HalfTensor)
inputs_val_v = Variable(inputs_val_v, requires_grad=False).to(device) # wrap inputs in Variable
inputs_val_v = transforms(inputs_val_v)
# print(inputs_val_v.shape)
ds_val = net(inputs_val_v)[0][0]
# print(ds_val.shape)
## recover the prediction spatial size to the orignal image size
pred_val = F.upsample(ds_val,(shapes_val),mode='bilinear')[0][0]
# print(pred_val.shape)
ma = torch.max(pred_val)
mi = torch.min(pred_val)
pred_val = (pred_val-mi)/(ma-mi) # max = 1
if device == 'cuda': torch.cuda.empty_cache()
refined_mask = (pred_val.detach().cpu().numpy()*255).astype(np.uint8)
# refined_mask[refined_mask>127] = 255
# refined_mask[refined_mask<=127] = 0
# refined_mask = 1 - refined_mask.astype(np.byte)
ret, binary = cv2.threshold(refined_mask, 0, 255, cv2.THRESH_OTSU)
return binary# it is the mask we need
hypar = {} # paramters for inferencing
dis_model_path = hf_hub_download(repo_id="jwlarocque/DIS-SAM", filename="DIS-SAM-checkpoint.pth")
# hypar["model_path"] ="~/.cache/huggingface/hub/jwlarocque/DIS-SAM"
hypar["model_path"] = os.path.split(dis_model_path)[0]
# hypar["restore_model"] = "DIS-SAM-checkpoint.pth"
hypar["restore_model"] = os.path.split(dis_model_path)[1]
hypar["model_digit"] = "full"
hypar["input_size"] = [1024, 1024]
hypar["model"] = ISNetDIS(in_ch=5)
net = build_model(hypar, device)
def bbox_from_str(bbox_str: str):
if not bbox_str:
return None
split = bbox_str.strip().split(",")
if len(split) == 4:
try:
bbox = [int(x) for x in split]
return np.array(bbox)
except ValueError:
return None
else:
return None
def predict(input_img: np.ndarray, bbox_str: str):
predictor.set_image(input_img)
input_label = np.array([1])
bbox = bbox_from_str(bbox_str)
input_box = bbox if bbox is not None else np.array([0, 0, input_img.shape[1], input_img.shape[0]])
masks, scores, logits = predictor.predict(
box=input_box,
point_labels=input_label,
multimask_output=True,
)
mask = masks[0]
DIS_mask = mask
DIS_box = get_box_from_mask(DIS_mask)
refined_mask = predict_one(net,input_img,DIS_mask,DIS_box,transform,hypar,device)
mask_gray = (mask * 255).astype(np.uint8)
refined_mask_gray = refined_mask.astype(np.uint8)
return mask_gray, refined_mask_gray
gradio_app = gr.Interface(
predict,
inputs=[
gr.Image(label="Select Image", sources=['upload', 'webcam'], type="numpy"),
gr.Textbox(label="Bounding Box Prompt (pixels)", placeholder="x1,y1,x2,y2")],
outputs=[gr.Image(label="SAM Mask", type="numpy", image_mode="L"), gr.Image(label="DIS-SAM Mask", type="numpy", image_mode="L")],
title="DIS-SAM",
examples=[
["./images/wire_shelf.jpg", "20,100,480,660"],
["./images/radio_telescope.jpg", "1130,320,4000,2920"],
["./images/bridge.jpg", ""],
["./images/tree.jpg", "70,110,2290,1800"]
]
)
if __name__ == "__main__":
gradio_app.launch()
|