File size: 23,967 Bytes
ab7d699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
## data loader
## Ackownledgement:
## We would like to thank Dr. Ibrahim Almakky (https://scholar.google.co.uk/citations?user=T9MTcK0AAAAJ&hl=en)
## for his helps in implementing cache machanism of our DIS dataloader.
from __future__ import print_function, division

import numpy as np
import random
from copy import deepcopy
import json
from tqdm import tqdm
from skimage import io
import os
from glob import glob
import matplotlib.pyplot as plt
from PIL import Image, ImageOps
import torch
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
from torchvision.transforms.functional import normalize
import torch.nn.functional as F
import cv2
from scipy.ndimage import label

def show_gray_images(images, m=4):
    """

    展示一组灰度图像



    参数:

    images: 一个形状为(n, h, w)的数组,其中n是图像的数量,h和w分别是图像的高度和宽度。

    m: 每行展示的图像数量,默认为4。



    返回值:


    """
    n, h, w = images.shape  # 获取输入图像的数量、高度和宽度
    num_rows = (n + m - 1) // m  # 计算需要的行数
    fig, axes = plt.subplots(num_rows, m, figsize=(m*2, num_rows*2))  # 创建画布和子图
    plt.subplots_adjust(wspace=0.05, hspace=0.05)  # 调整子图间的间距
    for i in range(num_rows):
        for j in range(m):
            idx = i*m + j  # 计算当前图像的索引
            if idx < n:
                axes[i, j].imshow(images[idx], cmap='gray')  # 展示图像
                axes[i, j].axis('off')  # 关闭坐标轴显示
    plt.show()  # 显示图像
#### --------------------- DIS dataloader cache ---------------------####

def segment_connected_components(mask):
    # 将mask转换为PyTorch张量
    mask_tensor = torch.tensor(mask)

    # 使用Scipy的label函数找到连通组件
    labeled_array, num_features = label(mask_tensor.numpy())

    # 创建一个字典来存储每个连通组件的像素值
    components = {}
    for label_idx in range(1, num_features + 1):
        component_mask = (labeled_array == label_idx)
        components[label_idx] = component_mask.astype(int)

    return components

def FillHole(im_in):
    img = np.array(im_in,dtype=np.uint8)[0]
    mask = np.zeros_like(img)
    contours, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    for contour in contours:
        cv2.drawContours(mask, [contour], -1, 255, thickness=cv2.FILLED)
    im_out = torch.from_numpy(mask)[None,...].float()
    return im_out

def get_im_gt_name_dict(datasets, flag='valid'):
    print("------------------------------", flag, "--------------------------------")
    name_im_gt_mid_list = []
    for i in range(len(datasets)):
        print("--->>>", flag, " dataset ",i,"/",len(datasets)," ",datasets[i]["name"],"<<<---")
        tmp_im_list, tmp_gt_list, tmp_mid_list = [], [], []
        tmp_im_list = glob(datasets[i]["im_dir"]+os.sep+'*'+datasets[i]["im_ext"])

        # img_name_dict[im_dirs[i][0]] = tmp_im_list
        # print('-im-',datasets[i]["name"],datasets[i]["im_dir"], ': ',len(tmp_im_list))

        if(datasets[i]["gt_dir"]==""):
            print('-gt-', datasets[i]["name"], datasets[i]["gt_dir"], ': ', 'No Ground Truth Found')
            tmp_gt_list = []
        else:
            tmp_gt_list = [datasets[i]["gt_dir"]+os.sep+x.split(os.sep)[-1].split(datasets[i]["im_ext"])[0]+datasets[i]["gt_ext"] for x in tmp_im_list]

            # lbl_name_dict[im_dirs[i][0]] = tmp_gt_list
            # print('-gt-', datasets[i]["name"],datasets[i]["gt_dir"], ': ',len(tmp_gt_list))

        if(datasets[i]["mid_dir"]==""):
            print('-mid-', datasets[i]["name"], datasets[i]["mid_dir"], ': ', 'No mid Found')
            tmp_mid_list = []
        else:
            tmp_mid_list = [datasets[i]["mid_dir"]+os.sep+x.split(os.sep)[-1].split(datasets[i]["im_ext"])[0]+datasets[i]["mid_ext"] for x in tmp_im_list]

            # lbl_name_dict[im_dirs[i][0]] = tmp_gt_list
            # print('-mid-', datasets[i]["name"],datasets[i]["mid_dir"], ': ',len(tmp_gt_list))



        if flag=="train": ## combine multiple training sets into one dataset
            if len(name_im_gt_mid_list)==0:
                name_im_gt_mid_list.append({"dataset_name":datasets[i]["name"],
                                        "im_path":tmp_im_list,
                                        "gt_path":tmp_gt_list,
                                        "mid_path":tmp_mid_list,
                                        "im_ext":datasets[i]["im_ext"],
                                        "gt_ext":datasets[i]["gt_ext"],
                                        "mid_ext":datasets[i]["mid_ext"],
                                        "cache_dir":datasets[i]["cache_dir"]})
            else:
                name_im_gt_mid_list[0]["dataset_name"] = name_im_gt_mid_list[0]["dataset_name"] + "_" + datasets[i]["name"]
                name_im_gt_mid_list[0]["im_path"] = name_im_gt_mid_list[0]["im_path"] + tmp_im_list
                name_im_gt_mid_list[0]["gt_path"] = name_im_gt_mid_list[0]["gt_path"] + tmp_gt_list
                name_im_gt_mid_list[0]["mid_path"] = name_im_gt_mid_list[0]["mid_path"] + tmp_mid_list
                if datasets[i]["im_ext"]!=".jpg" or datasets[i]["gt_ext"]!=".png":
                    print("Error: Please make sure all you images and ground truth masks are in jpg and png format respectively !!!")
                    exit()
                name_im_gt_mid_list[0]["im_ext"] = ".jpg"
                name_im_gt_mid_list[0]["gt_ext"] = ".png"
                name_im_gt_mid_list[0]["mid_ext"] = ".png"
                name_im_gt_mid_list[0]["cache_dir"] = os.sep.join(datasets[i]["cache_dir"].split(os.sep)[0:-1])+os.sep+name_im_gt_mid_list[0]["dataset_name"]
        else: ## keep different validation or inference datasets as separate ones
            name_im_gt_mid_list.append({"dataset_name":datasets[i]["name"],
                                    "im_path":tmp_im_list,
                                    "gt_path":tmp_gt_list,
                                    "mid_path":tmp_mid_list,
                                    "im_ext":datasets[i]["im_ext"],
                                    "gt_ext":datasets[i]["gt_ext"],
                                    "mid_ext":datasets[i]["mid_ext"],
                                    "cache_dir":datasets[i]["cache_dir"]})

    return name_im_gt_mid_list

def create_dataloaders(name_im_gt_mid_list, cache_size=[], cache_boost=True, my_transforms=[], batch_size=1, shuffle=False,is_train=True):
    ## model="train": return one dataloader for training
    ## model="valid": return a list of dataloaders for validation or testing

    gos_dataloaders = []
    gos_datasets = []

    if(len(name_im_gt_mid_list)==0):
        return gos_dataloaders, gos_datasets

    num_workers_ = 0
    # if(batch_size>1):
    #     num_workers_ = 2
    # if(batch_size>4):
    #     num_workers_ = 4
    # if(batch_size>8):
    #     num_workers_ = 8

    for i in range(0,len(name_im_gt_mid_list)):
        gos_dataset = GOSDatasetCache([name_im_gt_mid_list[i]],
                                      cache_size = cache_size,
                                      cache_path = name_im_gt_mid_list[i]["cache_dir"],
                                      cache_boost = cache_boost,
                                      transform = transforms.Compose(my_transforms),
                                      is_train=is_train)
        gos_dataloaders.append(DataLoader(gos_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers_))
        gos_datasets.append(gos_dataset)

    return gos_dataloaders, gos_datasets

def im_reader(im_path):
    image = Image.open(im_path).convert('RGB')
    corrected_image = ImageOps.exif_transpose(image)
    # return plt.imread(im_path)
    return np.array(corrected_image)

def im_preprocess(im,size):
    if len(im.shape) > 3:
        im = im[:,:,:3]
    if len(im.shape) < 3:
        im = im[:, :, np.newaxis]
    if im.shape[2] == 1:
        im = np.repeat(im, 3, axis=2)
    im_tensor = torch.tensor(im.copy(), dtype=torch.float32)
    im_tensor = torch.transpose(torch.transpose(im_tensor,1,2),0,1)
    if(len(size)<2):
        return im_tensor, im.shape[0:2]
    else:
        im_tensor = torch.unsqueeze(im_tensor,0)
        im_tensor = F.upsample(im_tensor, size, mode="bilinear")
        im_tensor = torch.squeeze(im_tensor,0)

    return im_tensor.type(torch.uint8), im.shape[0:2]

def gt_preprocess(gt,size):
    if len(gt.shape) > 2:
        gt = gt[:, :, 0]

    gt_tensor = torch.unsqueeze(torch.tensor(gt, dtype=torch.uint8),0)

    if(len(size)<2):
        return gt_tensor.type(torch.uint8), gt.shape[0:2]
    else:
        gt_tensor = torch.unsqueeze(torch.tensor(gt_tensor, dtype=torch.float32),0)
        gt_tensor = F.upsample(gt_tensor, size, mode="bilinear")
        gt_tensor = torch.squeeze(gt_tensor,0)

    return gt_tensor.type(torch.uint8), gt.shape[0:2]
    # return gt_tensor, gt.shape[0:2]

class GOSRandomHFlip(object):
    def __init__(self,prob=0.25):
        self.prob = prob
    def __call__(self,sample):
        imidx, image, label, shape, box, mask =  sample['imidx'], sample['image'], sample['label'], sample['shape'], sample['box'], sample['mask']

        # random horizontal flip
        randomnum = random.random()
        if randomnum <= self.prob:
            image = torch.flip(image,dims=[2])
            label = torch.flip(label,dims=[2])
            box = torch.flip(box,dims=[2])
            mask = torch.flip(mask,dims=[2])
        elif randomnum <= self.prob*2:
            image = torch.flip(image,dims=[1])
            label = torch.flip(label,dims=[1])
            box = torch.flip(box,dims=[1])
            mask = torch.flip(mask,dims=[1])
        elif randomnum <= self.prob*3:
            image = torch.flip(image,dims=[2])
            label = torch.flip(label,dims=[2])
            box = torch.flip(box,dims=[2])
            mask = torch.flip(mask,dims=[2])
            image = torch.flip(image,dims=[1])
            label = torch.flip(label,dims=[1])
            box = torch.flip(box,dims=[1])
            mask = torch.flip(mask,dims=[1])

        return {'imidx':imidx,'image':image, 'label':label, 'shape':shape, 'mask':mask, 'box':box}

class GOSResize(object):
    def __init__(self,size=[320,320]):
        self.size = size
    def __call__(self,sample):
        imidx, image, label, shape, box, mask =  sample['imidx'], sample['image'], sample['label'], sample['shape'], sample['box'], sample['mask']

        # import time
        # start = time.time()

        image = torch.squeeze(F.upsample(torch.unsqueeze(image,0),self.size,mode='bilinear'),dim=0)
        label = torch.squeeze(F.upsample(torch.unsqueeze(label,0),self.size,mode='bilinear'),dim=0)

        # print("time for resize: ", time.time()-start)

        return {'imidx':imidx,'image':image, 'label':label, 'shape':shape, 'mask':mask, 'box':box}

class GOSRandomCrop(object):
    def __init__(self,size=[288,288]):
        self.size = size
    def __call__(self,sample):
        imidx, image, label, shape, box, mask =  sample['imidx'], sample['image'], sample['label'], sample['shape'], sample['box'], sample['mask']

        h, w = image.shape[1:]
        new_h, new_w = self.size

        top = np.random.randint(0, h - new_h)
        left = np.random.randint(0, w - new_w)

        image = image[:,top:top+new_h,left:left+new_w]
        label = label[:,top:top+new_h,left:left+new_w]

        return {'imidx':imidx,'image':image, 'label':label, 'shape':shape, 'mask':mask, 'box':box}


class GOSNormalize(object):
    def __init__(self, mean=[0.485,0.456,0.406,0], std=[0.229,0.224,0.225,1.0]):
        self.mean = mean
        self.std = std

    def __call__(self,sample):

        imidx, image, label, shape, box, mask =  sample['imidx'], sample['image'], sample['label'], sample['shape'], sample['box'], sample['mask']
        # print(image.shape)
        image = normalize(image,self.mean,self.std)
        mask = normalize(mask,0,1)
        box = normalize(box,0,1)

        return {'imidx':imidx,'image':image, 'label':label, 'shape':shape, 'mask':mask, 'box':box}

class GOSRandomthorw(object):
    def __init__(self,ratio=0.25):
        self.ratio = ratio
    def __call__(self,sample):
        imidx, image, label, shape, box, mask =  sample['imidx'], sample['image'], sample['label'], sample['shape'], sample['box'], sample['mask']
        randomnum = random.random()
        if randomnum < self.ratio:
            mask = torch.zeros_like(mask)
        elif randomnum < self.ratio*2:
            box = torch.zeros_like(box)
        elif randomnum < self.ratio*3:
            mask = torch.zeros_like(mask)
            box = torch.zeros_like(box)

        return {'imidx':imidx,'image':image, 'label':label, 'shape':shape, 'mask':mask, 'box':box}

class GOSDatasetCache(Dataset):

    def __init__(self, name_im_gt_mid_list, cache_size=[], cache_path='./cache', cache_file_name='dataset.json', cache_boost=False, transform=None, is_train=True):

        self.is_train = is_train
        self.cache_size = cache_size
        self.cache_path = cache_path
        self.cache_file_name = cache_file_name
        self.cache_boost_name = ""

        self.cache_boost = cache_boost
        # self.ims_npy = None
        # self.gts_npy = None

        ## cache all the images and ground truth into a single pytorch tensor
        self.ims_pt = None
        self.gts_pt = None
        self.mid_pt = None

        ## we will cache the npy as well regardless of the cache_boost
        # if(self.cache_boost):
        self.cache_boost_name = cache_file_name.split('.json')[0]

        self.transform = transform

        self.dataset = {}

        ## combine different datasets into one
        dataset_names = []
        dt_name_list = [] # dataset name per image
        im_name_list = [] # image name
        im_path_list = [] # im path
        gt_path_list = [] # gt path
        mid_path_list = []
        im_ext_list = [] # im ext
        gt_ext_list = [] # gt ext
        mid_ext_list = []
        for i in range(0,len(name_im_gt_mid_list)):
            dataset_names.append(name_im_gt_mid_list[i]["dataset_name"])
            # dataset name repeated based on the number of images in this dataset
            dt_name_list.extend([name_im_gt_mid_list[i]["dataset_name"] for x in name_im_gt_mid_list[i]["im_path"]])
            im_name_list.extend([x.split(os.sep)[-1].split(name_im_gt_mid_list[i]["im_ext"])[0] for x in name_im_gt_mid_list[i]["im_path"]])
            im_path_list.extend(name_im_gt_mid_list[i]["im_path"])
            gt_path_list.extend(name_im_gt_mid_list[i]["gt_path"])
            mid_path_list.extend(name_im_gt_mid_list[i]["mid_path"])
            im_ext_list.extend([name_im_gt_mid_list[i]["im_ext"] for x in name_im_gt_mid_list[i]["im_path"]])
            gt_ext_list.extend([name_im_gt_mid_list[i]["gt_ext"] for x in name_im_gt_mid_list[i]["gt_path"]])
            mid_ext_list.extend([name_im_gt_mid_list[i]["mid_ext"] for x in name_im_gt_mid_list[i]["mid_path"]])


        self.dataset["data_name"] = dt_name_list
        self.dataset["im_name"] = im_name_list
        self.dataset["im_path"] = im_path_list
        self.dataset["ori_im_path"] = deepcopy(im_path_list)
        self.dataset["gt_path"] = gt_path_list
        self.dataset["ori_gt_path"] = deepcopy(gt_path_list)
        self.dataset["mid_path"] = mid_path_list
        self.dataset["ori_mid_path"] = deepcopy(mid_path_list)
        self.dataset["im_shp"] = []
        self.dataset["gt_shp"] = []
        self.dataset["mid_shp"] = []
        self.dataset["im_ext"] = im_ext_list
        self.dataset["gt_ext"] = gt_ext_list
        self.dataset["mid_ext"] = mid_ext_list


        self.dataset["ims_pt_dir"] = ""
        self.dataset["gts_pt_dir"] = ""
        self.dataset["mid_pt_dir"] = ""

        self.dataset = self.manage_cache(dataset_names)

    def manage_cache(self,dataset_names):
        if not os.path.exists(self.cache_path): # create the folder for cache
            os.makedirs(self.cache_path)
        cache_folder = os.path.join(self.cache_path, "_".join(dataset_names)+"_"+"x".join([str(x) for x in self.cache_size]))
        # if cache_folder.__len__() > 100: cache_folder = cache_folder[:100]
        if not os.path.exists(cache_folder): # check if the cache files are there, if not then cache
            return self.cache(cache_folder)
        return self.load_cache(cache_folder)

    def cache(self,cache_folder):
        os.mkdir(cache_folder)
        cached_dataset = deepcopy(self.dataset)

        # ims_list = []
        # gts_list = []
        ims_pt_list = []
        gts_pt_list = []
        mid_pt_list = []
        for i, im_path in tqdm(enumerate(self.dataset["im_path"]), total=len(self.dataset["im_path"])):

            im_id = cached_dataset["im_name"][i]
            # print("im_path: ", im_path)
            im = im_reader(im_path)
            im, im_shp = im_preprocess(im,self.cache_size)
            im_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_im.pt")
            torch.save(im,im_cache_file)

            cached_dataset["im_path"][i] = im_cache_file
            if(self.cache_boost):
                ims_pt_list.append(torch.unsqueeze(im,0))
            # ims_list.append(im.cpu().data.numpy().astype(np.uint8))

            gt = np.zeros(im.shape[0:2])
            if len(self.dataset["gt_path"])!=0:
                gt = im_reader(self.dataset["gt_path"][i])
            gt, gt_shp = gt_preprocess(gt,self.cache_size)
            gt_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_gt.pt")
            torch.save(gt,gt_cache_file)
            if len(self.dataset["gt_path"])>0:
                cached_dataset["gt_path"][i] = gt_cache_file
            else:
                cached_dataset["gt_path"].append(gt_cache_file)
            if(self.cache_boost):
                gts_pt_list.append(torch.unsqueeze(gt,0))

            mid = np.zeros(im.shape[0:2])
            if len(self.dataset["mid_path"])!=0:
                mid = im_reader(self.dataset["mid_path"][i])
            mid, mid_shp = gt_preprocess(mid,self.cache_size)
            mid_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_mid.pt")
            torch.save(mid,mid_cache_file)
            if len(self.dataset["mid_path"])>0:
                cached_dataset["mid_path"][i] = mid_cache_file
            else:
                cached_dataset["mid_path"].append(mid_cache_file)
            if(self.cache_boost):
                mid_pt_list.append(torch.unsqueeze(mid,0))
            
            # gts_list.append(gt.cpu().data.numpy().astype(np.uint8))

            # im_shp_cache_file = os.path.join(cache_folder,im_id + "_im_shp.pt")
            # torch.save(gt_shp, shp_cache_file)
            cached_dataset["im_shp"].append(im_shp)
            # self.dataset["im_shp"].append(im_shp)

            # shp_cache_file = os.path.join(cache_folder,im_id + "_gt_shp.pt")
            # torch.save(gt_shp, shp_cache_file)
            cached_dataset["gt_shp"].append(gt_shp)
            # self.dataset["gt_shp"].append(gt_shp)

            cached_dataset["mid_shp"].append(mid_shp)

        if(self.cache_boost):
            cached_dataset["ims_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_ims.pt')
            cached_dataset["gts_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_gts.pt')
            cached_dataset["mid_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_mids.pt')
            self.ims_pt = torch.cat(ims_pt_list,dim=0)
            self.gts_pt = torch.cat(gts_pt_list,dim=0)
            self.mid_pt = torch.cat(mid_pt_list,dim=0)
            torch.save(torch.cat(ims_pt_list,dim=0),cached_dataset["ims_pt_dir"])
            torch.save(torch.cat(gts_pt_list,dim=0),cached_dataset["gts_pt_dir"])
            torch.save(torch.cat(mid_pt_list,dim=0),cached_dataset["mid_pt_dir"])

        try:
            json_file = open(os.path.join(cache_folder, self.cache_file_name),"w")
            json.dump(cached_dataset, json_file)
            json_file.close()
        except Exception:
            raise FileNotFoundError("Cannot create JSON")
        return cached_dataset

    def load_cache(self, cache_folder):
        print(os.path.join(cache_folder,self.cache_file_name))
        json_file = open(os.path.join(cache_folder,self.cache_file_name),"r")
        dataset = json.load(json_file)
        json_file.close()
        ## if cache_boost is true, we will load the image npy and ground truth npy into the RAM
        ## otherwise the pytorch tensor will be loaded
        if(self.cache_boost):
            # self.ims_npy = np.load(dataset["ims_npy_dir"])
            # self.gts_npy = np.load(dataset["gts_npy_dir"])
            self.ims_pt = torch.load(dataset["ims_pt_dir"], map_location='cpu')
            self.gts_pt = torch.load(dataset["gts_pt_dir"], map_location='cpu')
            self.mid_pt = torch.load(dataset["mid_pt_dir"], map_location='cpu')
        return dataset

    def __len__(self):
        return len(self.dataset["im_path"])

    def __getitem__(self, idx):

        im = None
        gt = None
        mid = None
        if(self.cache_boost and self.ims_pt is not None):

            # start = time.time()
            im = self.ims_pt[idx]#.type(torch.float32)
            gt = self.gts_pt[idx]#.type(torch.float32)
            mid = self.mid_pt[idx]#.type(torch.float32)
            # print(idx, 'time for pt loading: ', time.time()-start)

        else:
            # import time
            # start = time.time()
            # print("tensor***")
            im_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["im_path"][idx].split(os.sep)[-2:]))
            im = torch.load(im_pt_path)#(self.dataset["im_path"][idx])
            gt_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["gt_path"][idx].split(os.sep)[-2:]))
            gt = torch.load(gt_pt_path)#(self.dataset["gt_path"][idx])
            mid_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["mid_path"][idx].split(os.sep)[-2:]))
            mid = torch.load(mid_pt_path)#(self.dataset["gt_path"][idx])
            # print(idx,'time for tensor loading: ', time.time()-start)


        im_shp = self.dataset["im_shp"][idx]
        # print("time for loading im and gt: ", time.time()-start)

        box = torch.zeros_like(gt[0])+gt[0]
        rows, cols = torch.where(box>0)
        left = torch.min(cols)
        top = torch.min(rows)
        right = torch.max(cols)
        bottom = torch.max(rows)
        box[top:bottom,left:right] = 255
        box[box!=255] = 0
        box = box[None,...]
        gim = torch.cat([im,mid,box],dim=0)

        # start_time = time.time()
        im = torch.divide(gim,255.0)
        gt = torch.divide(gt,255.0)
        mask = torch.divide(mid,255.0)
        box = torch.divide(box,255.0)

        
        sample = {
        "imidx": torch.from_numpy(np.array(idx)),
        "image": im,
        "label": gt,
        "mask": mask,
        'box': box,
        "shape": torch.from_numpy(np.array(im_shp)),
        }

        if self.transform:
            sample = self.transform(sample)
        return sample