Spaces:
Running
Running
import os | |
# os.environ['CUDA_VISIBLE_DEVICES'] = '2' | |
from skimage import io, transform | |
import torch | |
import torchvision | |
from torch.autograd import Variable | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.utils.data import Dataset, DataLoader | |
from torchvision import transforms, utils | |
import torch.optim as optim | |
from skimage.metrics import structural_similarity as ssim | |
import matplotlib.pyplot as plt | |
import numpy as np | |
from PIL import Image | |
import glob | |
import cv2 | |
from scipy.stats import pearsonr | |
def mae_torch(pred,gt): | |
h,w = gt.shape[0:2] | |
sumError = torch.sum(torch.absolute(torch.sub(pred.float(), gt.float()))) | |
maeError = torch.divide(sumError,float(h)*float(w)*255.0+1e-4) | |
return maeError | |
import torch | |
def maximal_f_measure_torch(pd, gt): | |
gtNum = torch.sum((gt > 128).float() * 1) # 计算真实标签中像素值大于128的数量 | |
# 从预测张量中提取正例和负例 | |
pp = pd[gt > 128] | |
nn = pd[gt <= 128] | |
# 计算正例和负例的直方图 | |
pp_hist = torch.histc(pp, bins=255, min=0, max=255) | |
nn_hist = torch.histc(nn, bins=255, min=0, max=255) | |
# 反转直方图并计算累积和 | |
pp_hist_flip = torch.flipud(pp_hist) | |
nn_hist_flip = torch.flipud(nn_hist) | |
pp_hist_flip_cum = torch.cumsum(pp_hist_flip, dim=0) | |
nn_hist_flip_cum = torch.cumsum(nn_hist_flip, dim=0) | |
# 计算Precision、Recall 和 F-measure | |
precision = (pp_hist_flip_cum) / (pp_hist_flip_cum + nn_hist_flip_cum + 1e-4) | |
recall = (pp_hist_flip_cum) / (gtNum + 1e-4) | |
f_measure = (2 * precision * recall) / (precision + recall + 1e-4) | |
# 找到最大F-measure及其对应的阈值 | |
max_f_measure, threshold = torch.max(f_measure, dim=0) | |
return max_f_measure.item(), threshold.item() | |
def calculate_meam(image1, image2): | |
# 直方图均衡化 | |
image1_equalized = cv2.equalizeHist(image1) | |
image2_equalized = cv2.equalizeHist(image2) | |
# 计算Pearson相关系数 | |
correlation_coefficient, _ = pearsonr(image1_equalized.flatten(), image2_equalized.flatten()) | |
# 计算MEAM值 | |
meam_value = correlation_coefficient * np.mean(np.minimum(image1_equalized, image2_equalized)) | |
return meam_value | |
def f1score_torch(pd,gt): | |
# print(gt.shape) | |
gtNum = torch.sum((gt>128).float()*1) ## number of ground truth pixels | |
pp = pd[gt>128] | |
nn = pd[gt<=128] | |
pp_hist =torch.histc(pp,bins=255,min=0,max=255) | |
nn_hist = torch.histc(nn,bins=255,min=0,max=255) | |
pp_hist_flip = torch.flipud(pp_hist) | |
nn_hist_flip = torch.flipud(nn_hist) | |
pp_hist_flip_cum = torch.cumsum(pp_hist_flip, dim=0) | |
nn_hist_flip_cum = torch.cumsum(nn_hist_flip, dim=0) | |
precision = (pp_hist_flip_cum)/(pp_hist_flip_cum + nn_hist_flip_cum + 1e-4)#torch.divide(pp_hist_flip_cum,torch.sum(torch.sum(pp_hist_flip_cum, nn_hist_flip_cum), 1e-4)) | |
recall = (pp_hist_flip_cum)/(gtNum + 1e-4) | |
f1 = (1+0.3)*precision*recall/(0.3*precision+recall + 1e-4) | |
return torch.reshape(precision,(1,precision.shape[0])),torch.reshape(recall,(1,recall.shape[0])),torch.reshape(f1,(1,f1.shape[0])) | |
def f1_mae_torch(pred, gt, valid_dataset, idx, mybins, hypar): | |
import time | |
tic = time.time() | |
if(len(gt.shape)>2): | |
gt = gt[:,:,0] | |
# if pred.shape != gt.shape: | |
# plt.imshow(pred.cpu().detach().numpy()) | |
# plt.show() | |
# plt.imshow(gt.cpu().detach().numpy()) | |
# plt.show() | |
# pred = pred.transpose(1,0) | |
# print(pred.shape,gt.shape) | |
# print(valid_dataset.dataset["im_name"][idx]+".png") | |
pre, rec, f1 = f1score_torch(pred,gt) | |
mae = mae_torch(pred,gt) | |
# hypar["valid_out_dir"] = hypar["valid_out_dir"]+"-eval" ### | |
if(hypar["valid_out_dir"]!=""): | |
if(not os.path.exists(hypar["valid_out_dir"])): | |
os.mkdir(hypar["valid_out_dir"]) | |
dataset_folder = os.path.join(hypar["valid_out_dir"],valid_dataset.dataset["data_name"][idx]) | |
if(not os.path.exists(dataset_folder)): | |
os.mkdir(dataset_folder) | |
io.imsave(os.path.join(dataset_folder,valid_dataset.dataset["im_name"][idx]+".png"),pred.cpu().data.numpy().astype(np.uint8)) | |
# print(valid_dataset.dataset["im_name"][idx]+".png") | |
# print("time for evaluation : ", time.time()-tic) | |
return pre.cpu().data.numpy(), rec.cpu().data.numpy(), f1.cpu().data.numpy(), mae.cpu().data.numpy() | |