Spaces:
Running
Running
## data loader | |
## Ackownledgement: | |
## We would like to thank Dr. Ibrahim Almakky (https://scholar.google.co.uk/citations?user=T9MTcK0AAAAJ&hl=en) | |
## for his helps in implementing cache machanism of our DIS dataloader. | |
from __future__ import print_function, division | |
import numpy as np | |
import random | |
from copy import deepcopy | |
import json | |
from tqdm import tqdm | |
from skimage import io | |
import os | |
from glob import glob | |
import matplotlib.pyplot as plt | |
from PIL import Image, ImageOps | |
import torch | |
from torch.utils.data import Dataset, DataLoader | |
from torchvision import transforms, utils | |
from torchvision.transforms.functional import normalize | |
import torch.nn.functional as F | |
import cv2 | |
from scipy.ndimage import label | |
def show_gray_images(images, m=4): | |
""" | |
展示一组灰度图像 | |
参数: | |
images: 一个形状为(n, h, w)的数组,其中n是图像的数量,h和w分别是图像的高度和宽度。 | |
m: 每行展示的图像数量,默认为4。 | |
返回值: | |
无 | |
""" | |
n, h, w = images.shape # 获取输入图像的数量、高度和宽度 | |
num_rows = (n + m - 1) // m # 计算需要的行数 | |
fig, axes = plt.subplots(num_rows, m, figsize=(m*2, num_rows*2)) # 创建画布和子图 | |
plt.subplots_adjust(wspace=0.05, hspace=0.05) # 调整子图间的间距 | |
for i in range(num_rows): | |
for j in range(m): | |
idx = i*m + j # 计算当前图像的索引 | |
if idx < n: | |
axes[i, j].imshow(images[idx], cmap='gray') # 展示图像 | |
axes[i, j].axis('off') # 关闭坐标轴显示 | |
plt.show() # 显示图像 | |
#### --------------------- DIS dataloader cache ---------------------#### | |
def segment_connected_components(mask): | |
# 将mask转换为PyTorch张量 | |
mask_tensor = torch.tensor(mask) | |
# 使用Scipy的label函数找到连通组件 | |
labeled_array, num_features = label(mask_tensor.numpy()) | |
# 创建一个字典来存储每个连通组件的像素值 | |
components = {} | |
for label_idx in range(1, num_features + 1): | |
component_mask = (labeled_array == label_idx) | |
components[label_idx] = component_mask.astype(int) | |
return components | |
def FillHole(im_in): | |
img = np.array(im_in,dtype=np.uint8)[0] | |
mask = np.zeros_like(img) | |
contours, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
for contour in contours: | |
cv2.drawContours(mask, [contour], -1, 255, thickness=cv2.FILLED) | |
im_out = torch.from_numpy(mask)[None,...].float() | |
return im_out | |
def get_im_gt_name_dict(datasets, flag='valid'): | |
print("------------------------------", flag, "--------------------------------") | |
name_im_gt_mid_list = [] | |
for i in range(len(datasets)): | |
print("--->>>", flag, " dataset ",i,"/",len(datasets)," ",datasets[i]["name"],"<<<---") | |
tmp_im_list, tmp_gt_list, tmp_mid_list = [], [], [] | |
tmp_im_list = glob(datasets[i]["im_dir"]+os.sep+'*'+datasets[i]["im_ext"]) | |
# img_name_dict[im_dirs[i][0]] = tmp_im_list | |
# print('-im-',datasets[i]["name"],datasets[i]["im_dir"], ': ',len(tmp_im_list)) | |
if(datasets[i]["gt_dir"]==""): | |
print('-gt-', datasets[i]["name"], datasets[i]["gt_dir"], ': ', 'No Ground Truth Found') | |
tmp_gt_list = [] | |
else: | |
tmp_gt_list = [datasets[i]["gt_dir"]+os.sep+x.split(os.sep)[-1].split(datasets[i]["im_ext"])[0]+datasets[i]["gt_ext"] for x in tmp_im_list] | |
# lbl_name_dict[im_dirs[i][0]] = tmp_gt_list | |
# print('-gt-', datasets[i]["name"],datasets[i]["gt_dir"], ': ',len(tmp_gt_list)) | |
if(datasets[i]["mid_dir"]==""): | |
print('-mid-', datasets[i]["name"], datasets[i]["mid_dir"], ': ', 'No mid Found') | |
tmp_mid_list = [] | |
else: | |
tmp_mid_list = [datasets[i]["mid_dir"]+os.sep+x.split(os.sep)[-1].split(datasets[i]["im_ext"])[0]+datasets[i]["mid_ext"] for x in tmp_im_list] | |
# lbl_name_dict[im_dirs[i][0]] = tmp_gt_list | |
# print('-mid-', datasets[i]["name"],datasets[i]["mid_dir"], ': ',len(tmp_gt_list)) | |
if flag=="train": ## combine multiple training sets into one dataset | |
if len(name_im_gt_mid_list)==0: | |
name_im_gt_mid_list.append({"dataset_name":datasets[i]["name"], | |
"im_path":tmp_im_list, | |
"gt_path":tmp_gt_list, | |
"mid_path":tmp_mid_list, | |
"im_ext":datasets[i]["im_ext"], | |
"gt_ext":datasets[i]["gt_ext"], | |
"mid_ext":datasets[i]["mid_ext"], | |
"cache_dir":datasets[i]["cache_dir"]}) | |
else: | |
name_im_gt_mid_list[0]["dataset_name"] = name_im_gt_mid_list[0]["dataset_name"] + "_" + datasets[i]["name"] | |
name_im_gt_mid_list[0]["im_path"] = name_im_gt_mid_list[0]["im_path"] + tmp_im_list | |
name_im_gt_mid_list[0]["gt_path"] = name_im_gt_mid_list[0]["gt_path"] + tmp_gt_list | |
name_im_gt_mid_list[0]["mid_path"] = name_im_gt_mid_list[0]["mid_path"] + tmp_mid_list | |
if datasets[i]["im_ext"]!=".jpg" or datasets[i]["gt_ext"]!=".png": | |
print("Error: Please make sure all you images and ground truth masks are in jpg and png format respectively !!!") | |
exit() | |
name_im_gt_mid_list[0]["im_ext"] = ".jpg" | |
name_im_gt_mid_list[0]["gt_ext"] = ".png" | |
name_im_gt_mid_list[0]["mid_ext"] = ".png" | |
name_im_gt_mid_list[0]["cache_dir"] = os.sep.join(datasets[i]["cache_dir"].split(os.sep)[0:-1])+os.sep+name_im_gt_mid_list[0]["dataset_name"] | |
else: ## keep different validation or inference datasets as separate ones | |
name_im_gt_mid_list.append({"dataset_name":datasets[i]["name"], | |
"im_path":tmp_im_list, | |
"gt_path":tmp_gt_list, | |
"mid_path":tmp_mid_list, | |
"im_ext":datasets[i]["im_ext"], | |
"gt_ext":datasets[i]["gt_ext"], | |
"mid_ext":datasets[i]["mid_ext"], | |
"cache_dir":datasets[i]["cache_dir"]}) | |
return name_im_gt_mid_list | |
def create_dataloaders(name_im_gt_mid_list, cache_size=[], cache_boost=True, my_transforms=[], batch_size=1, shuffle=False,is_train=True): | |
## model="train": return one dataloader for training | |
## model="valid": return a list of dataloaders for validation or testing | |
gos_dataloaders = [] | |
gos_datasets = [] | |
if(len(name_im_gt_mid_list)==0): | |
return gos_dataloaders, gos_datasets | |
num_workers_ = 0 | |
# if(batch_size>1): | |
# num_workers_ = 2 | |
# if(batch_size>4): | |
# num_workers_ = 4 | |
# if(batch_size>8): | |
# num_workers_ = 8 | |
for i in range(0,len(name_im_gt_mid_list)): | |
gos_dataset = GOSDatasetCache([name_im_gt_mid_list[i]], | |
cache_size = cache_size, | |
cache_path = name_im_gt_mid_list[i]["cache_dir"], | |
cache_boost = cache_boost, | |
transform = transforms.Compose(my_transforms), | |
is_train=is_train) | |
gos_dataloaders.append(DataLoader(gos_dataset, batch_size=batch_size, shuffle=shuffle, num_workers=num_workers_)) | |
gos_datasets.append(gos_dataset) | |
return gos_dataloaders, gos_datasets | |
def im_reader(im_path): | |
image = Image.open(im_path).convert('RGB') | |
corrected_image = ImageOps.exif_transpose(image) | |
# return plt.imread(im_path) | |
return np.array(corrected_image) | |
def im_preprocess(im,size): | |
if len(im.shape) > 3: | |
im = im[:,:,:3] | |
if len(im.shape) < 3: | |
im = im[:, :, np.newaxis] | |
if im.shape[2] == 1: | |
im = np.repeat(im, 3, axis=2) | |
im_tensor = torch.tensor(im.copy(), dtype=torch.float32) | |
im_tensor = torch.transpose(torch.transpose(im_tensor,1,2),0,1) | |
if(len(size)<2): | |
return im_tensor, im.shape[0:2] | |
else: | |
im_tensor = torch.unsqueeze(im_tensor,0) | |
im_tensor = F.upsample(im_tensor, size, mode="bilinear") | |
im_tensor = torch.squeeze(im_tensor,0) | |
return im_tensor.type(torch.uint8), im.shape[0:2] | |
def gt_preprocess(gt,size): | |
if len(gt.shape) > 2: | |
gt = gt[:, :, 0] | |
gt_tensor = torch.unsqueeze(torch.tensor(gt, dtype=torch.uint8),0) | |
if(len(size)<2): | |
return gt_tensor.type(torch.uint8), gt.shape[0:2] | |
else: | |
gt_tensor = torch.unsqueeze(torch.tensor(gt_tensor, dtype=torch.float32),0) | |
gt_tensor = F.upsample(gt_tensor, size, mode="bilinear") | |
gt_tensor = torch.squeeze(gt_tensor,0) | |
return gt_tensor.type(torch.uint8), gt.shape[0:2] | |
# return gt_tensor, gt.shape[0:2] | |
class GOSRandomHFlip(object): | |
def __init__(self,prob=0.25): | |
self.prob = prob | |
def __call__(self,sample): | |
imidx, image, label, shape, box, mask = sample['imidx'], sample['image'], sample['label'], sample['shape'], sample['box'], sample['mask'] | |
# random horizontal flip | |
randomnum = random.random() | |
if randomnum <= self.prob: | |
image = torch.flip(image,dims=[2]) | |
label = torch.flip(label,dims=[2]) | |
box = torch.flip(box,dims=[2]) | |
mask = torch.flip(mask,dims=[2]) | |
elif randomnum <= self.prob*2: | |
image = torch.flip(image,dims=[1]) | |
label = torch.flip(label,dims=[1]) | |
box = torch.flip(box,dims=[1]) | |
mask = torch.flip(mask,dims=[1]) | |
elif randomnum <= self.prob*3: | |
image = torch.flip(image,dims=[2]) | |
label = torch.flip(label,dims=[2]) | |
box = torch.flip(box,dims=[2]) | |
mask = torch.flip(mask,dims=[2]) | |
image = torch.flip(image,dims=[1]) | |
label = torch.flip(label,dims=[1]) | |
box = torch.flip(box,dims=[1]) | |
mask = torch.flip(mask,dims=[1]) | |
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape, 'mask':mask, 'box':box} | |
class GOSResize(object): | |
def __init__(self,size=[320,320]): | |
self.size = size | |
def __call__(self,sample): | |
imidx, image, label, shape, box, mask = sample['imidx'], sample['image'], sample['label'], sample['shape'], sample['box'], sample['mask'] | |
# import time | |
# start = time.time() | |
image = torch.squeeze(F.upsample(torch.unsqueeze(image,0),self.size,mode='bilinear'),dim=0) | |
label = torch.squeeze(F.upsample(torch.unsqueeze(label,0),self.size,mode='bilinear'),dim=0) | |
# print("time for resize: ", time.time()-start) | |
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape, 'mask':mask, 'box':box} | |
class GOSRandomCrop(object): | |
def __init__(self,size=[288,288]): | |
self.size = size | |
def __call__(self,sample): | |
imidx, image, label, shape, box, mask = sample['imidx'], sample['image'], sample['label'], sample['shape'], sample['box'], sample['mask'] | |
h, w = image.shape[1:] | |
new_h, new_w = self.size | |
top = np.random.randint(0, h - new_h) | |
left = np.random.randint(0, w - new_w) | |
image = image[:,top:top+new_h,left:left+new_w] | |
label = label[:,top:top+new_h,left:left+new_w] | |
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape, 'mask':mask, 'box':box} | |
class GOSNormalize(object): | |
def __init__(self, mean=[0.485,0.456,0.406,0], std=[0.229,0.224,0.225,1.0]): | |
self.mean = mean | |
self.std = std | |
def __call__(self,sample): | |
imidx, image, label, shape, box, mask = sample['imidx'], sample['image'], sample['label'], sample['shape'], sample['box'], sample['mask'] | |
# print(image.shape) | |
image = normalize(image,self.mean,self.std) | |
mask = normalize(mask,0,1) | |
box = normalize(box,0,1) | |
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape, 'mask':mask, 'box':box} | |
class GOSRandomthorw(object): | |
def __init__(self,ratio=0.25): | |
self.ratio = ratio | |
def __call__(self,sample): | |
imidx, image, label, shape, box, mask = sample['imidx'], sample['image'], sample['label'], sample['shape'], sample['box'], sample['mask'] | |
randomnum = random.random() | |
if randomnum < self.ratio: | |
mask = torch.zeros_like(mask) | |
elif randomnum < self.ratio*2: | |
box = torch.zeros_like(box) | |
elif randomnum < self.ratio*3: | |
mask = torch.zeros_like(mask) | |
box = torch.zeros_like(box) | |
return {'imidx':imidx,'image':image, 'label':label, 'shape':shape, 'mask':mask, 'box':box} | |
class GOSDatasetCache(Dataset): | |
def __init__(self, name_im_gt_mid_list, cache_size=[], cache_path='./cache', cache_file_name='dataset.json', cache_boost=False, transform=None, is_train=True): | |
self.is_train = is_train | |
self.cache_size = cache_size | |
self.cache_path = cache_path | |
self.cache_file_name = cache_file_name | |
self.cache_boost_name = "" | |
self.cache_boost = cache_boost | |
# self.ims_npy = None | |
# self.gts_npy = None | |
## cache all the images and ground truth into a single pytorch tensor | |
self.ims_pt = None | |
self.gts_pt = None | |
self.mid_pt = None | |
## we will cache the npy as well regardless of the cache_boost | |
# if(self.cache_boost): | |
self.cache_boost_name = cache_file_name.split('.json')[0] | |
self.transform = transform | |
self.dataset = {} | |
## combine different datasets into one | |
dataset_names = [] | |
dt_name_list = [] # dataset name per image | |
im_name_list = [] # image name | |
im_path_list = [] # im path | |
gt_path_list = [] # gt path | |
mid_path_list = [] | |
im_ext_list = [] # im ext | |
gt_ext_list = [] # gt ext | |
mid_ext_list = [] | |
for i in range(0,len(name_im_gt_mid_list)): | |
dataset_names.append(name_im_gt_mid_list[i]["dataset_name"]) | |
# dataset name repeated based on the number of images in this dataset | |
dt_name_list.extend([name_im_gt_mid_list[i]["dataset_name"] for x in name_im_gt_mid_list[i]["im_path"]]) | |
im_name_list.extend([x.split(os.sep)[-1].split(name_im_gt_mid_list[i]["im_ext"])[0] for x in name_im_gt_mid_list[i]["im_path"]]) | |
im_path_list.extend(name_im_gt_mid_list[i]["im_path"]) | |
gt_path_list.extend(name_im_gt_mid_list[i]["gt_path"]) | |
mid_path_list.extend(name_im_gt_mid_list[i]["mid_path"]) | |
im_ext_list.extend([name_im_gt_mid_list[i]["im_ext"] for x in name_im_gt_mid_list[i]["im_path"]]) | |
gt_ext_list.extend([name_im_gt_mid_list[i]["gt_ext"] for x in name_im_gt_mid_list[i]["gt_path"]]) | |
mid_ext_list.extend([name_im_gt_mid_list[i]["mid_ext"] for x in name_im_gt_mid_list[i]["mid_path"]]) | |
self.dataset["data_name"] = dt_name_list | |
self.dataset["im_name"] = im_name_list | |
self.dataset["im_path"] = im_path_list | |
self.dataset["ori_im_path"] = deepcopy(im_path_list) | |
self.dataset["gt_path"] = gt_path_list | |
self.dataset["ori_gt_path"] = deepcopy(gt_path_list) | |
self.dataset["mid_path"] = mid_path_list | |
self.dataset["ori_mid_path"] = deepcopy(mid_path_list) | |
self.dataset["im_shp"] = [] | |
self.dataset["gt_shp"] = [] | |
self.dataset["mid_shp"] = [] | |
self.dataset["im_ext"] = im_ext_list | |
self.dataset["gt_ext"] = gt_ext_list | |
self.dataset["mid_ext"] = mid_ext_list | |
self.dataset["ims_pt_dir"] = "" | |
self.dataset["gts_pt_dir"] = "" | |
self.dataset["mid_pt_dir"] = "" | |
self.dataset = self.manage_cache(dataset_names) | |
def manage_cache(self,dataset_names): | |
if not os.path.exists(self.cache_path): # create the folder for cache | |
os.makedirs(self.cache_path) | |
cache_folder = os.path.join(self.cache_path, "_".join(dataset_names)+"_"+"x".join([str(x) for x in self.cache_size])) | |
# if cache_folder.__len__() > 100: cache_folder = cache_folder[:100] | |
if not os.path.exists(cache_folder): # check if the cache files are there, if not then cache | |
return self.cache(cache_folder) | |
return self.load_cache(cache_folder) | |
def cache(self,cache_folder): | |
os.mkdir(cache_folder) | |
cached_dataset = deepcopy(self.dataset) | |
# ims_list = [] | |
# gts_list = [] | |
ims_pt_list = [] | |
gts_pt_list = [] | |
mid_pt_list = [] | |
for i, im_path in tqdm(enumerate(self.dataset["im_path"]), total=len(self.dataset["im_path"])): | |
im_id = cached_dataset["im_name"][i] | |
# print("im_path: ", im_path) | |
im = im_reader(im_path) | |
im, im_shp = im_preprocess(im,self.cache_size) | |
im_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_im.pt") | |
torch.save(im,im_cache_file) | |
cached_dataset["im_path"][i] = im_cache_file | |
if(self.cache_boost): | |
ims_pt_list.append(torch.unsqueeze(im,0)) | |
# ims_list.append(im.cpu().data.numpy().astype(np.uint8)) | |
gt = np.zeros(im.shape[0:2]) | |
if len(self.dataset["gt_path"])!=0: | |
gt = im_reader(self.dataset["gt_path"][i]) | |
gt, gt_shp = gt_preprocess(gt,self.cache_size) | |
gt_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_gt.pt") | |
torch.save(gt,gt_cache_file) | |
if len(self.dataset["gt_path"])>0: | |
cached_dataset["gt_path"][i] = gt_cache_file | |
else: | |
cached_dataset["gt_path"].append(gt_cache_file) | |
if(self.cache_boost): | |
gts_pt_list.append(torch.unsqueeze(gt,0)) | |
mid = np.zeros(im.shape[0:2]) | |
if len(self.dataset["mid_path"])!=0: | |
mid = im_reader(self.dataset["mid_path"][i]) | |
mid, mid_shp = gt_preprocess(mid,self.cache_size) | |
mid_cache_file = os.path.join(cache_folder,self.dataset["data_name"][i]+"_"+im_id + "_mid.pt") | |
torch.save(mid,mid_cache_file) | |
if len(self.dataset["mid_path"])>0: | |
cached_dataset["mid_path"][i] = mid_cache_file | |
else: | |
cached_dataset["mid_path"].append(mid_cache_file) | |
if(self.cache_boost): | |
mid_pt_list.append(torch.unsqueeze(mid,0)) | |
# gts_list.append(gt.cpu().data.numpy().astype(np.uint8)) | |
# im_shp_cache_file = os.path.join(cache_folder,im_id + "_im_shp.pt") | |
# torch.save(gt_shp, shp_cache_file) | |
cached_dataset["im_shp"].append(im_shp) | |
# self.dataset["im_shp"].append(im_shp) | |
# shp_cache_file = os.path.join(cache_folder,im_id + "_gt_shp.pt") | |
# torch.save(gt_shp, shp_cache_file) | |
cached_dataset["gt_shp"].append(gt_shp) | |
# self.dataset["gt_shp"].append(gt_shp) | |
cached_dataset["mid_shp"].append(mid_shp) | |
if(self.cache_boost): | |
cached_dataset["ims_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_ims.pt') | |
cached_dataset["gts_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_gts.pt') | |
cached_dataset["mid_pt_dir"] = os.path.join(cache_folder, self.cache_boost_name+'_mids.pt') | |
self.ims_pt = torch.cat(ims_pt_list,dim=0) | |
self.gts_pt = torch.cat(gts_pt_list,dim=0) | |
self.mid_pt = torch.cat(mid_pt_list,dim=0) | |
torch.save(torch.cat(ims_pt_list,dim=0),cached_dataset["ims_pt_dir"]) | |
torch.save(torch.cat(gts_pt_list,dim=0),cached_dataset["gts_pt_dir"]) | |
torch.save(torch.cat(mid_pt_list,dim=0),cached_dataset["mid_pt_dir"]) | |
try: | |
json_file = open(os.path.join(cache_folder, self.cache_file_name),"w") | |
json.dump(cached_dataset, json_file) | |
json_file.close() | |
except Exception: | |
raise FileNotFoundError("Cannot create JSON") | |
return cached_dataset | |
def load_cache(self, cache_folder): | |
print(os.path.join(cache_folder,self.cache_file_name)) | |
json_file = open(os.path.join(cache_folder,self.cache_file_name),"r") | |
dataset = json.load(json_file) | |
json_file.close() | |
## if cache_boost is true, we will load the image npy and ground truth npy into the RAM | |
## otherwise the pytorch tensor will be loaded | |
if(self.cache_boost): | |
# self.ims_npy = np.load(dataset["ims_npy_dir"]) | |
# self.gts_npy = np.load(dataset["gts_npy_dir"]) | |
self.ims_pt = torch.load(dataset["ims_pt_dir"], map_location='cpu') | |
self.gts_pt = torch.load(dataset["gts_pt_dir"], map_location='cpu') | |
self.mid_pt = torch.load(dataset["mid_pt_dir"], map_location='cpu') | |
return dataset | |
def __len__(self): | |
return len(self.dataset["im_path"]) | |
def __getitem__(self, idx): | |
im = None | |
gt = None | |
mid = None | |
if(self.cache_boost and self.ims_pt is not None): | |
# start = time.time() | |
im = self.ims_pt[idx]#.type(torch.float32) | |
gt = self.gts_pt[idx]#.type(torch.float32) | |
mid = self.mid_pt[idx]#.type(torch.float32) | |
# print(idx, 'time for pt loading: ', time.time()-start) | |
else: | |
# import time | |
# start = time.time() | |
# print("tensor***") | |
im_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["im_path"][idx].split(os.sep)[-2:])) | |
im = torch.load(im_pt_path)#(self.dataset["im_path"][idx]) | |
gt_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["gt_path"][idx].split(os.sep)[-2:])) | |
gt = torch.load(gt_pt_path)#(self.dataset["gt_path"][idx]) | |
mid_pt_path = os.path.join(self.cache_path,os.sep.join(self.dataset["mid_path"][idx].split(os.sep)[-2:])) | |
mid = torch.load(mid_pt_path)#(self.dataset["gt_path"][idx]) | |
# print(idx,'time for tensor loading: ', time.time()-start) | |
im_shp = self.dataset["im_shp"][idx] | |
# print("time for loading im and gt: ", time.time()-start) | |
box = torch.zeros_like(gt[0])+gt[0] | |
rows, cols = torch.where(box>0) | |
left = torch.min(cols) | |
top = torch.min(rows) | |
right = torch.max(cols) | |
bottom = torch.max(rows) | |
box[top:bottom,left:right] = 255 | |
box[box!=255] = 0 | |
box = box[None,...] | |
gim = torch.cat([im,mid,box],dim=0) | |
# start_time = time.time() | |
im = torch.divide(gim,255.0) | |
gt = torch.divide(gt,255.0) | |
mask = torch.divide(mid,255.0) | |
box = torch.divide(box,255.0) | |
sample = { | |
"imidx": torch.from_numpy(np.array(idx)), | |
"image": im, | |
"label": gt, | |
"mask": mask, | |
'box': box, | |
"shape": torch.from_numpy(np.array(im_shp)), | |
} | |
if self.transform: | |
sample = self.transform(sample) | |
return sample | |