DIS-SAM / IS_Net /basics.py
jwlarocque's picture
Create DIS-SAM space
ab7d699
import os
# os.environ['CUDA_VISIBLE_DEVICES'] = '2'
from skimage import io, transform
import torch
import torchvision
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
import torch.optim as optim
from skimage.metrics import structural_similarity as ssim
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import glob
import cv2
from scipy.stats import pearsonr
def mae_torch(pred,gt):
h,w = gt.shape[0:2]
sumError = torch.sum(torch.absolute(torch.sub(pred.float(), gt.float())))
maeError = torch.divide(sumError,float(h)*float(w)*255.0+1e-4)
return maeError
import torch
def maximal_f_measure_torch(pd, gt):
gtNum = torch.sum((gt > 128).float() * 1) # 计算真实标签中像素值大于128的数量
# 从预测张量中提取正例和负例
pp = pd[gt > 128]
nn = pd[gt <= 128]
# 计算正例和负例的直方图
pp_hist = torch.histc(pp, bins=255, min=0, max=255)
nn_hist = torch.histc(nn, bins=255, min=0, max=255)
# 反转直方图并计算累积和
pp_hist_flip = torch.flipud(pp_hist)
nn_hist_flip = torch.flipud(nn_hist)
pp_hist_flip_cum = torch.cumsum(pp_hist_flip, dim=0)
nn_hist_flip_cum = torch.cumsum(nn_hist_flip, dim=0)
# 计算Precision、Recall 和 F-measure
precision = (pp_hist_flip_cum) / (pp_hist_flip_cum + nn_hist_flip_cum + 1e-4)
recall = (pp_hist_flip_cum) / (gtNum + 1e-4)
f_measure = (2 * precision * recall) / (precision + recall + 1e-4)
# 找到最大F-measure及其对应的阈值
max_f_measure, threshold = torch.max(f_measure, dim=0)
return max_f_measure.item(), threshold.item()
def calculate_meam(image1, image2):
# 直方图均衡化
image1_equalized = cv2.equalizeHist(image1)
image2_equalized = cv2.equalizeHist(image2)
# 计算Pearson相关系数
correlation_coefficient, _ = pearsonr(image1_equalized.flatten(), image2_equalized.flatten())
# 计算MEAM值
meam_value = correlation_coefficient * np.mean(np.minimum(image1_equalized, image2_equalized))
return meam_value
def f1score_torch(pd,gt):
# print(gt.shape)
gtNum = torch.sum((gt>128).float()*1) ## number of ground truth pixels
pp = pd[gt>128]
nn = pd[gt<=128]
pp_hist =torch.histc(pp,bins=255,min=0,max=255)
nn_hist = torch.histc(nn,bins=255,min=0,max=255)
pp_hist_flip = torch.flipud(pp_hist)
nn_hist_flip = torch.flipud(nn_hist)
pp_hist_flip_cum = torch.cumsum(pp_hist_flip, dim=0)
nn_hist_flip_cum = torch.cumsum(nn_hist_flip, dim=0)
precision = (pp_hist_flip_cum)/(pp_hist_flip_cum + nn_hist_flip_cum + 1e-4)#torch.divide(pp_hist_flip_cum,torch.sum(torch.sum(pp_hist_flip_cum, nn_hist_flip_cum), 1e-4))
recall = (pp_hist_flip_cum)/(gtNum + 1e-4)
f1 = (1+0.3)*precision*recall/(0.3*precision+recall + 1e-4)
return torch.reshape(precision,(1,precision.shape[0])),torch.reshape(recall,(1,recall.shape[0])),torch.reshape(f1,(1,f1.shape[0]))
def f1_mae_torch(pred, gt, valid_dataset, idx, mybins, hypar):
import time
tic = time.time()
if(len(gt.shape)>2):
gt = gt[:,:,0]
# if pred.shape != gt.shape:
# plt.imshow(pred.cpu().detach().numpy())
# plt.show()
# plt.imshow(gt.cpu().detach().numpy())
# plt.show()
# pred = pred.transpose(1,0)
# print(pred.shape,gt.shape)
# print(valid_dataset.dataset["im_name"][idx]+".png")
pre, rec, f1 = f1score_torch(pred,gt)
mae = mae_torch(pred,gt)
# hypar["valid_out_dir"] = hypar["valid_out_dir"]+"-eval" ###
if(hypar["valid_out_dir"]!=""):
if(not os.path.exists(hypar["valid_out_dir"])):
os.mkdir(hypar["valid_out_dir"])
dataset_folder = os.path.join(hypar["valid_out_dir"],valid_dataset.dataset["data_name"][idx])
if(not os.path.exists(dataset_folder)):
os.mkdir(dataset_folder)
io.imsave(os.path.join(dataset_folder,valid_dataset.dataset["im_name"][idx]+".png"),pred.cpu().data.numpy().astype(np.uint8))
# print(valid_dataset.dataset["im_name"][idx]+".png")
# print("time for evaluation : ", time.time()-tic)
return pre.cpu().data.numpy(), rec.cpu().data.numpy(), f1.cpu().data.numpy(), mae.cpu().data.numpy()