Spaces:
Running
Running
import torch | |
from torch.optim.optimizer import Optimizer, required | |
class AdaiS(Optimizer): | |
r"""Implements Adai with stable/decoupled weight decay (AdaiS/AdaiW). | |
It is based on | |
`Adai: Separating the Effects of Adaptive Learning Rate and Momentum Inertia` | |
and | |
`Stable Weight Decay Regularization`__. | |
Arguments: | |
params (iterable): iterable of parameters to optimize or dicts defining | |
parameter groups | |
lr (float, optional): learning rate | |
betas (Tuple[float, float], optional): beta0 and beta2 (default: (0.1, 0.99)) | |
eps (float, optional): the inertia bound (default: 1e-03) | |
weight_decay (float, optional): weight decay (default: 0) | |
""" | |
def __init__(self, params, lr=required, betas=(0.1, 0.99), eps=1e-03, | |
weight_decay=0): | |
if lr is not required and lr < 0.0: | |
raise ValueError("Invalid learning rate: {}".format(lr)) | |
if not 0.0 <= eps: | |
raise ValueError("Invalid epsilon value: {}".format(eps)) | |
if not 0.0 <= betas[0]: | |
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) | |
if not 0.0 <= betas[1] < 1.0: | |
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) | |
if not 0.0 <= weight_decay: | |
raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) | |
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) | |
super(AdaiS, self).__init__(params, defaults) | |
def __setstate__(self, state): | |
super(AdaiS, self).__setstate__(state) | |
def step(self, closure=None): | |
"""Performs a single optimization step. | |
Arguments: | |
closure (callable, optional): A closure that reevaluates the model | |
and returns the loss. | |
""" | |
loss = None | |
if closure is not None: | |
loss = closure() | |
param_size = 0 | |
exp_avg_sq_hat_sum = 0. | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
param_size += p.numel() | |
grad = p.grad.data | |
state = self.state[p] | |
# State initialization | |
if len(state) == 0: | |
state['step'] = 0 | |
# Exponential moving average of gradient values | |
state['exp_avg'] = torch.zeros_like(p.data, memory_format=torch.preserve_format) | |
# Exponential moving average of squared gradient values | |
state['exp_avg_sq'] = torch.zeros_like(p.data, memory_format=torch.preserve_format) | |
# Cumulative products of beta1 | |
state['beta1_prod'] = torch.ones_like(p.data, memory_format=torch.preserve_format) | |
exp_avg_sq = state['exp_avg_sq'] | |
beta0, beta2 = group['betas'] | |
state['step'] += 1 | |
bias_correction2 = 1 - beta2 ** state['step'] | |
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) | |
exp_avg_sq_hat = exp_avg_sq / bias_correction2 | |
exp_avg_sq_hat_sum += exp_avg_sq_hat.sum() | |
# Calculate the mean of all elements in exp_avg_sq_hat | |
exp_avg_sq_hat_mean = exp_avg_sq_hat_sum / param_size | |
for group in self.param_groups: | |
for p in group['params']: | |
if p.grad is None: | |
continue | |
grad = p.grad.data | |
# Perform stable/decoupled weight decay | |
if group['weight_decay'] !=0: | |
p.data.mul_(1 - group['lr'] * group['weight_decay']) | |
state = self.state[p] | |
exp_avg = state['exp_avg'] | |
exp_avg_sq = state['exp_avg_sq'] | |
beta0, beta2 = group['betas'] | |
beta1_prod = state['beta1_prod'] | |
bias_correction2 = 1 - beta2 ** state['step'] | |
exp_avg_sq_hat = exp_avg_sq / bias_correction2 | |
beta1 = (1. - (exp_avg_sq_hat / exp_avg_sq_hat_mean).mul(beta0)).clamp(0., 1 - group['eps']) | |
beta1_prod.mul_(beta1) | |
bias_correction1 = 1 - beta1_prod | |
exp_avg.mul_(beta1).addcmul_(1 - beta1, grad) | |
exp_avg_hat = exp_avg.div(bias_correction1) | |
step_size = group['lr'] | |
p.data.add_(-step_size, exp_avg_hat) | |
return loss | |