import torch from torch.optim.optimizer import Optimizer, required class Adai(Optimizer): r"""Implements Adaptive Inertia Estimation (Adai) algorithm. It has be proposed in `Adai: Separating the Effects of Adaptive Learning Rate and Momentum Inertia`__. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float): learning rate betas (Tuple[float, float], optional): beta0 and beta2 (default: (0.1, 0.99)) eps (float, optional): the inertia bound (default: 1e-03) weight_decay (float, optional): weight decay (L2 penalty) (default: 0) """ def __init__(self, params, lr=required, betas=(0.1, 0.99), eps=1e-03, weight_decay=0): if lr is not required and lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0]: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) if not 0.0 <= weight_decay: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) super(Adai, self).__init__(params, defaults) def __setstate__(self, state): super(Adai, self).__setstate__(state) @torch.no_grad() def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() param_size = 0 exp_avg_sq_hat_sum = 0. for group in self.param_groups: for p in group['params']: if p.grad is None: continue param_size += p.numel() grad = p.grad.data state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data, memory_format=torch.preserve_format) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data, memory_format=torch.preserve_format) # Cumulative products of beta1 state['beta1_prod'] = torch.ones_like(p.data, memory_format=torch.preserve_format) state['step'] += 1 exp_avg_sq = state['exp_avg_sq'] beta0, beta2 = group['betas'] bias_correction2 = 1 - beta2 ** state['step'] if group['weight_decay'] != 0: grad.add_(group['weight_decay'], p.data) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) exp_avg_sq_hat_sum += exp_avg_sq.sum() / bias_correction2 # Calculate the mean of all elements in exp_avg_sq_hat exp_avg_sq_hat_mean = exp_avg_sq_hat_sum / param_size for group in self.param_groups: for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] exp_avg = state['exp_avg'] exp_avg_sq = state['exp_avg_sq'] beta1_prod = state['beta1_prod'] beta0, beta2 = group['betas'] bias_correction2 = 1 - beta2 ** state['step'] exp_avg_sq_hat = exp_avg_sq / bias_correction2 beta1 = (1. - (exp_avg_sq_hat / exp_avg_sq_hat_mean).mul(beta0)).clamp(0., 1 - group['eps']) beta1_prod.mul_(beta1) bias_correction1 = 1 - beta1_prod exp_avg.mul_(beta1).addcmul_(1 - beta1, grad) exp_avg_hat = exp_avg / bias_correction1 step_size = group['lr'] p.data.add_(-step_size, exp_avg_hat) return loss