import os # os.environ['CUDA_VISIBLE_DEVICES'] = '2' from skimage import io, transform import torch import torchvision from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils import torch.optim as optim from skimage.metrics import structural_similarity as ssim import matplotlib.pyplot as plt import numpy as np from PIL import Image import glob import cv2 from scipy.stats import pearsonr def mae_torch(pred,gt): h,w = gt.shape[0:2] sumError = torch.sum(torch.absolute(torch.sub(pred.float(), gt.float()))) maeError = torch.divide(sumError,float(h)*float(w)*255.0+1e-4) return maeError import torch def maximal_f_measure_torch(pd, gt): gtNum = torch.sum((gt > 128).float() * 1) # 计算真实标签中像素值大于128的数量 # 从预测张量中提取正例和负例 pp = pd[gt > 128] nn = pd[gt <= 128] # 计算正例和负例的直方图 pp_hist = torch.histc(pp, bins=255, min=0, max=255) nn_hist = torch.histc(nn, bins=255, min=0, max=255) # 反转直方图并计算累积和 pp_hist_flip = torch.flipud(pp_hist) nn_hist_flip = torch.flipud(nn_hist) pp_hist_flip_cum = torch.cumsum(pp_hist_flip, dim=0) nn_hist_flip_cum = torch.cumsum(nn_hist_flip, dim=0) # 计算Precision、Recall 和 F-measure precision = (pp_hist_flip_cum) / (pp_hist_flip_cum + nn_hist_flip_cum + 1e-4) recall = (pp_hist_flip_cum) / (gtNum + 1e-4) f_measure = (2 * precision * recall) / (precision + recall + 1e-4) # 找到最大F-measure及其对应的阈值 max_f_measure, threshold = torch.max(f_measure, dim=0) return max_f_measure.item(), threshold.item() def calculate_meam(image1, image2): # 直方图均衡化 image1_equalized = cv2.equalizeHist(image1) image2_equalized = cv2.equalizeHist(image2) # 计算Pearson相关系数 correlation_coefficient, _ = pearsonr(image1_equalized.flatten(), image2_equalized.flatten()) # 计算MEAM值 meam_value = correlation_coefficient * np.mean(np.minimum(image1_equalized, image2_equalized)) return meam_value def f1score_torch(pd,gt): # print(gt.shape) gtNum = torch.sum((gt>128).float()*1) ## number of ground truth pixels pp = pd[gt>128] nn = pd[gt<=128] pp_hist =torch.histc(pp,bins=255,min=0,max=255) nn_hist = torch.histc(nn,bins=255,min=0,max=255) pp_hist_flip = torch.flipud(pp_hist) nn_hist_flip = torch.flipud(nn_hist) pp_hist_flip_cum = torch.cumsum(pp_hist_flip, dim=0) nn_hist_flip_cum = torch.cumsum(nn_hist_flip, dim=0) precision = (pp_hist_flip_cum)/(pp_hist_flip_cum + nn_hist_flip_cum + 1e-4)#torch.divide(pp_hist_flip_cum,torch.sum(torch.sum(pp_hist_flip_cum, nn_hist_flip_cum), 1e-4)) recall = (pp_hist_flip_cum)/(gtNum + 1e-4) f1 = (1+0.3)*precision*recall/(0.3*precision+recall + 1e-4) return torch.reshape(precision,(1,precision.shape[0])),torch.reshape(recall,(1,recall.shape[0])),torch.reshape(f1,(1,f1.shape[0])) def f1_mae_torch(pred, gt, valid_dataset, idx, mybins, hypar): import time tic = time.time() if(len(gt.shape)>2): gt = gt[:,:,0] # if pred.shape != gt.shape: # plt.imshow(pred.cpu().detach().numpy()) # plt.show() # plt.imshow(gt.cpu().detach().numpy()) # plt.show() # pred = pred.transpose(1,0) # print(pred.shape,gt.shape) # print(valid_dataset.dataset["im_name"][idx]+".png") pre, rec, f1 = f1score_torch(pred,gt) mae = mae_torch(pred,gt) # hypar["valid_out_dir"] = hypar["valid_out_dir"]+"-eval" ### if(hypar["valid_out_dir"]!=""): if(not os.path.exists(hypar["valid_out_dir"])): os.mkdir(hypar["valid_out_dir"]) dataset_folder = os.path.join(hypar["valid_out_dir"],valid_dataset.dataset["data_name"][idx]) if(not os.path.exists(dataset_folder)): os.mkdir(dataset_folder) io.imsave(os.path.join(dataset_folder,valid_dataset.dataset["im_name"][idx]+".png"),pred.cpu().data.numpy().astype(np.uint8)) # print(valid_dataset.dataset["im_name"][idx]+".png") # print("time for evaluation : ", time.time()-tic) return pre.cpu().data.numpy(), rec.cpu().data.numpy(), f1.cpu().data.numpy(), mae.cpu().data.numpy()