import gradio as gr from transformers import pipeline # Load the Hugging Face model pipeline (example: Automatic Speech Recognition) model = pipeline("automatic-speech-recognition", model="kattojuprashanth238/whisper-small-te-v9") def process_audio(audio): """ Process the audio input and return the transcription. Args: - audio: file path of the uploaded or recorded audio Returns: - Transcription text """ if audio is None: return "No audio input provided." try: # Hugging Face model processing with long-form transcription result = model(audio, return_timestamps=True) transcription = result["text"] return transcription except Exception as e: return f"Error processing audio: {str(e)}" # Gradio interface with gr.Blocks() as app: gr.Markdown("## Audio Transcription Interface") gr.Markdown("Record audio or upload an audio file to transcribe it.") audio_input = gr.Audio(type="filepath", label="Record or Upload Audio") output = gr.Textbox(label="Transcription Result") # Submit button for processing btn = gr.Button("Transcribe") # Logic for the interface btn.click(process_audio, inputs=audio_input, outputs=output) # Launch the interface app.launch()