"""
---
title: Video Anomaly Detector
emoji: 🎥
colorFrom: blue
colorTo: green
sdk: streamlit
sdk_version: 1.31.0
app_file: app.py
pinned: false
license: mit
---
"""
import streamlit as st
import os
import tempfile
import time
from detector import VideoAnomalyDetector
import cv2
from PIL import Image
import numpy as np
from dotenv import load_dotenv
import streamlit.components.v1 as components
import json
import base64
from io import BytesIO
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.image import MIMEImage
import requests
import re
# Custom JSON encoder to handle numpy arrays and other non-serializable types
class NumpyEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, np.ndarray):
# Convert numpy arrays to base64 encoded strings
pil_img = Image.fromarray(obj)
buffered = BytesIO()
pil_img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return {"__ndarray__": img_str}
return super(NumpyEncoder, self).default(obj)
def send_email_notification(to_email, subject, body, image=None):
"""Send email notification with optional image attachment"""
try:
# Get email credentials from environment variables
smtp_server = os.getenv("SMTP_SERVER", "smtp.gmail.com")
smtp_port = int(os.getenv("SMTP_PORT", "1587"))
smtp_username = os.getenv("SMTP_USERNAME")
smtp_password = os.getenv("SMTP_PASSWORD")
if not smtp_username or not smtp_password:
st.warning("Email notification failed: SMTP credentials not configured. Please set SMTP_USERNAME and SMTP_PASSWORD environment variables.")
return False
# Create message
msg = MIMEMultipart()
msg['From'] = smtp_username
msg['To'] = to_email
msg['Subject'] = subject
# Attach text
msg.attach(MIMEText(body, 'plain'))
# Attach image if provided
if image is not None:
# Convert numpy array to image
if isinstance(image, np.ndarray):
pil_img = Image.fromarray(image)
img_byte_arr = BytesIO()
pil_img.save(img_byte_arr, format='PNG')
img_data = img_byte_arr.getvalue()
else:
# Assume it's already bytes
img_data = image
img_attachment = MIMEImage(img_data)
img_attachment.add_header('Content-Disposition', 'attachment', filename='anomaly.png')
msg.attach(img_attachment)
# Connect to server and send
server = smtplib.SMTP(smtp_server, smtp_port)
server.starttls()
server.login(smtp_username, smtp_password)
server.send_message(msg)
server.quit()
return True
except Exception as e:
st.warning(f"Email notification failed: {str(e)}")
return False
def send_whatsapp_notification(to_number, message):
"""Send WhatsApp notification using WhatsApp Business API"""
try:
# Get WhatsApp API credentials from environment variables
whatsapp_api_key = os.getenv("WHATSAPP_API_KEY")
whatsapp_phone_id = os.getenv("WHATSAPP_PHONE_ID")
if not whatsapp_api_key or not whatsapp_phone_id:
st.warning("WhatsApp notification failed: API credentials not configured. Please set WHATSAPP_API_KEY and WHATSAPP_PHONE_ID environment variables.")
return False
# For demonstration purposes, we'll show how to use the WhatsApp Business API
# In a real implementation, you would need to set up a WhatsApp Business account
# and use their official API
# Example using WhatsApp Business API
url = f"https://graph.facebook.com/v17.0/{whatsapp_phone_id}/messages"
headers = {
"Authorization": f"Bearer {whatsapp_api_key}",
"Content-Type": "application/json"
}
data = {
"messaging_product": "whatsapp",
"to": to_number,
"type": "text",
"text": {
"body": message
}
}
# For demonstration, we'll just log the request instead of actually sending it
print(f"Would send WhatsApp message to {to_number}: {message}")
# In a real implementation, you would uncomment this:
# response = requests.post(url, headers=headers, json=data)
# return response.status_code == 200
return True
except Exception as e:
st.warning(f"WhatsApp notification failed: {str(e)}")
return False
# Helper functions for notifications
def validate_email(email):
"""Validate email format"""
pattern = r'^[\w\.-]+@[\w\.-]+\.\w+$'
return re.match(pattern, email) is not None
def validate_phone(phone):
"""Validate phone number format (should include country code)"""
pattern = r'^\+\d{1,3}\d{6,14}$'
return re.match(pattern, phone) is not None
def send_notification(notification_type, contact, message, image=None):
"""Send notification based on type"""
if notification_type == "email":
if validate_email(contact):
return send_email_notification(
contact,
"Anomaly Detected - Video Anomaly Detector",
message,
image
)
else:
st.warning("Invalid email format. Notification not sent.")
return False
elif notification_type == "whatsapp":
if validate_phone(contact):
return send_whatsapp_notification(contact, message)
else:
st.warning("Invalid phone number format. Please include country code (e.g., +1234567890). Notification not sent.")
return False
return False
# Helper functions for displaying results
def display_single_result(result):
"""Display a single analysis result"""
if isinstance(result, dict):
# This is a single frame result or cumulative result
if "anomaly_detected" in result:
# Create columns for image and text
if "frame" in result:
col1, col2 = st.columns([1, 2])
with col1:
st.image(result["frame"], caption="Captured Frame", use_column_width=True)
with col2:
anomaly_detected = result["anomaly_detected"]
# Start building the HTML content
html_content = f"""
"""
# Add confidence if available
if "confidence" in result:
html_content += f"
Confidence: {result['confidence']}%
"
# Add analysis/text if available (check multiple possible keys)
analysis_text = None
for key in ["analysis", "text", "description"]:
if key in result and result[key]:
analysis_text = result[key]
break
if analysis_text:
html_content += f"
Analysis: {analysis_text}
"
# Add anomaly type if available
if "anomaly_type" in result and result["anomaly_type"]:
html_content += f"
Anomaly Type: {result['anomaly_type']}
"
# Close the div
html_content += "
"
# Display the HTML content
st.markdown(html_content, unsafe_allow_html=True)
else:
# No frame available, just show the text
# Start building the HTML content
html_content = ""
# Add confidence if available
if "confidence" in result:
html_content += f"
Confidence: {result['confidence']}%
"
# Add analysis/text if available (check multiple possible keys)
analysis_text = None
for key in ["analysis", "text", "description"]:
if key in result and result[key]:
analysis_text = result[key]
break
if analysis_text:
html_content += f"
Analysis: {analysis_text}
"
# Add anomaly type if available
if "anomaly_type" in result and result["anomaly_type"]:
html_content += f"
Anomaly Type: {result['anomaly_type']}
"
# Close the div
html_content += "
"
# Display the HTML content
st.markdown(html_content, unsafe_allow_html=True)
else:
# Display other types of results
st.json(result)
else:
# Unknown result type
st.write(result)
def display_results(results, analysis_depth):
"""Display analysis results based on analysis depth"""
if not results:
st.warning("No results to display")
return
# Add a main results header
st.markdown("", unsafe_allow_html=True)
# Add high-level summary at the top
if analysis_depth == "granular":
# For granular analysis, check if any frame has an anomaly
anomaly_frames = sum(1 for r in results if r.get("anomaly_detected", False))
total_frames = len(results)
if anomaly_frames > 0:
# Get the anomaly types from frames with anomalies
anomaly_types = set(r.get("anomaly_type", "Unknown") for r in results if r.get("anomaly_detected", False))
anomaly_types_str = ", ".join(anomaly_types)
st.markdown(
f"""
⚠️ ANOMALY DETECTED
Frames with anomalies: {anomaly_frames} out of {total_frames}
Anomaly types: {anomaly_types_str}
""",
unsafe_allow_html=True
)
else:
st.markdown(
"""
✅ No Anomalies Detected
No anomalies were detected in any of the analyzed frames.
""",
unsafe_allow_html=True
)
else: # cumulative
# For cumulative analysis, check the overall result
if results.get("anomaly_detected", False):
anomaly_type = results.get("anomaly_type", "Unknown")
st.markdown(
f"""
⚠️ ANOMALY DETECTED
Anomaly type: {anomaly_type}
""",
unsafe_allow_html=True
)
else:
st.markdown(
"""
✅ No Anomalies Detected
No anomalies were detected in the video.
""",
unsafe_allow_html=True
)
# Display detailed results
if analysis_depth == "granular":
# For granular analysis, results is a list of frame analyses
st.markdown("", unsafe_allow_html=True)
# Display detailed view directly without tabs
for i, result in enumerate(results):
with st.expander(f"Frame {i+1} - {'⚠️ ANOMALY' if result.get('anomaly_detected', False) else '✅ Normal'}"):
display_single_result(result)
else: # cumulative
st.markdown("", unsafe_allow_html=True)
display_single_result(results)
# Display key frames if available
if "frames" in results and results["frames"]:
st.markdown("", unsafe_allow_html=True)
# Create a row of columns for the frames
num_frames = len(results["frames"])
cols = st.columns(min(3, num_frames))
# Display each frame in a column
for i, (col, frame) in enumerate(zip(cols, results["frames"])):
with col:
st.image(frame, caption=f"Key Frame {i+1}", use_column_width=True)
# Initialize session state for stop button
if 'stop_requested' not in st.session_state:
st.session_state.stop_requested = False
def request_stop():
st.session_state.stop_requested = True
# Conditionally import Phi-4 detector
try:
from phi4_detector import Phi4AnomalyDetector
PHI4_AVAILABLE = True
except ImportError:
PHI4_AVAILABLE = False
# Load environment variables from .env file
load_dotenv()
# Set page configuration
st.set_page_config(
page_title="Video Anomaly Detector",
page_icon="🔍",
layout="wide"
)
# Custom CSS for better UI
st.markdown("""
""", unsafe_allow_html=True)
# Header with icon
st.markdown("🔍 Video Anomaly Detector
", unsafe_allow_html=True)
st.markdown("Analyze video frames for anomalies using advanced AI models
", unsafe_allow_html=True)
# Sidebar for inputs
with st.sidebar:
st.markdown("", unsafe_allow_html=True)
# Input source selection
st.markdown("📹Input Source
", unsafe_allow_html=True)
input_source = st.radio(
"",
["Video File", "Live Stream"],
index=0,
help="Select the input source for analysis"
)
# File uploader or stream URL based on input source
if input_source == "Video File":
st.markdown("📁Upload Video
", unsafe_allow_html=True)
# Find sample .mp4 files in the current directory
sample_files = []
for file in os.listdir():
if file.endswith('.mp4'):
sample_files.append(file)
# Show sample files if available
if sample_files:
st.info(f"Sample videos available: {', '.join(sample_files)}")
use_sample = st.checkbox("Use a sample video instead of uploading")
if use_sample:
selected_sample = st.selectbox("Select a sample video", sample_files)
uploaded_file = selected_sample # We'll handle this specially later
# Add video preview section
st.markdown("", unsafe_allow_html=True)
# Create a container for the video preview with custom styling
st.markdown("", unsafe_allow_html=True)
# Get the full path to the selected sample video
video_path = os.path.join(os.getcwd(), selected_sample)
# Display the video player
st.video(video_path)
# Display video information
try:
cap = cv2.VideoCapture(video_path)
if cap.isOpened():
# Get video properties
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Calculate duration
duration = frame_count / fps if fps > 0 else 0
# Format duration as minutes:seconds
minutes = int(duration // 60)
seconds = int(duration % 60)
duration_str = f"{minutes}:{seconds:02d}"
cap.release()
except Exception as e:
st.warning(f"Could not read video properties: {str(e)}")
st.markdown("
", unsafe_allow_html=True)
else:
uploaded_file = st.file_uploader("", type=["mp4", "avi", "mov", "mkv"])
else:
uploaded_file = st.file_uploader("", type=["mp4", "avi", "mov", "mkv"])
stream_source = None
else: # Live Stream
st.markdown("🔗Stream Source
", unsafe_allow_html=True)
stream_options = ["Webcam", "IP Camera / RTSP Stream"]
stream_type = st.selectbox("", stream_options, index=0)
if stream_type == "Webcam":
stream_source = 0 # Default webcam
else:
stream_source = st.text_input("Stream URL", placeholder="rtsp://username:password@ip_address:port/path")
# Max frames to process for live stream
st.markdown("🔢Frame Capture Settings
", unsafe_allow_html=True)
capture_mode = st.radio(
"Capture Mode",
["Frame Count Limit", "Time Interval (Continuous)"],
index=0,
help="Choose how to capture frames from the live stream"
)
if capture_mode == "Frame Count Limit":
max_frames = st.number_input(
"Maximum Frames",
min_value=1,
max_value=100,
value=30,
help="Maximum number of frames to process from the live stream"
)
time_interval = None
else: # Time Interval mode
max_frames = None # No frame limit in time interval mode
time_interval = st.number_input(
"Seconds Between Captures",
min_value=1,
max_value=60,
value=5,
help="Capture one frame every X seconds indefinitely"
)
st.info("⚠️ In time interval mode, processing will continue indefinitely. Use the Stop button to end capture.")
uploaded_file = None
# Model selection
st.markdown("🧠AI Model
", unsafe_allow_html=True)
# Add Phi-4 to the model options if available
model_options = ["GPT-4o", "GPT-4o-mini"]
if PHI4_AVAILABLE:
model_options.append("Phi-4")
model_options.append("Phi-3 (Coming Soon)")
model = st.selectbox(
"",
model_options,
index=0,
help="Select the AI model to use for analysis"
)
# Display model info based on selection
if model == "GPT-4o":
st.markdown("Most powerful model with highest accuracy
", unsafe_allow_html=True)
model_value = "gpt-4o"
use_phi4 = False
elif model == "GPT-4o-mini":
st.markdown("Faster and more cost-effective
", unsafe_allow_html=True)
model_value = "gpt-4o-mini"
use_phi4 = False
elif model == "Phi-4":
st.markdown("Microsoft's multimodal model, runs locally
", unsafe_allow_html=True)
model_value = "phi-4"
use_phi4 = True
else: # Phi-3
st.markdown("Not yet implemented
", unsafe_allow_html=True)
model_value = "gpt-4o" # Default to GPT-4o if Phi-3 is selected
use_phi4 = False
st.warning("Phi-3 support is coming soon. Using GPT-4o instead.")
# Skip frames input with icon
st.markdown("⏭️Frame Skip Rate
", unsafe_allow_html=True)
skip_frames = st.number_input(
"",
min_value=0,
max_value=100,
value=5,
help="Higher values process fewer frames, making analysis faster but potentially less accurate"
)
# Analysis depth selection
st.markdown("🔬Analysis Depth
", unsafe_allow_html=True)
analysis_depth = st.radio(
"",
["Granular (Frame by Frame)", "Cumulative (Overall)"],
index=0,
help="Granular provides analysis for each frame, Cumulative gives an overall assessment"
)
# Map the radio button value to the actual value
analysis_depth_value = "granular" if analysis_depth == "Granular (Frame by Frame)" else "cumulative"
# Notification options
st.markdown("🔔Notifications
", unsafe_allow_html=True)
enable_notifications = st.checkbox("Enable notifications for anomaly detection", value=False)
if enable_notifications:
notification_type = st.radio(
"Notification Method",
["Email", "WhatsApp"],
index=0,
help="Select how you want to be notified when anomalies are detected"
)
if notification_type == "Email":
notification_email = st.text_input(
"Email Address",
placeholder="your.email@example.com",
help="Enter the email address to receive notifications"
)
st.session_state.notification_contact = notification_email if notification_email else None
st.session_state.notification_type = "email" if notification_email else None
else: # WhatsApp
notification_phone = st.text_input(
"WhatsApp Number",
placeholder="+1234567890 (include country code)",
help="Enter your WhatsApp number with country code"
)
st.session_state.notification_contact = notification_phone if notification_phone else None
st.session_state.notification_type = "whatsapp" if notification_phone else None
else:
st.session_state.notification_type = None
st.session_state.notification_contact = None
# Prompt input with icon
st.markdown("💬Anomaly Description
", unsafe_allow_html=True)
prompt = st.text_area(
"",
value="Analyze this frame and describe if there are any unusual or anomalous activities or objects. If you detect anything unusual, explain what it is and why it might be considered an anomaly.",
height=150,
help="Describe what kind of anomaly to look for"
)
# API key input with default from environment variable and icon (only show for OpenAI models)
if not use_phi4:
st.markdown("🔑OpenAI API Key
", unsafe_allow_html=True)
default_api_key = os.getenv("OPENAI_API_KEY", "")
api_key = st.text_input(
"",
value=default_api_key,
type="password",
help="Your OpenAI API key with access to the selected model"
)
else:
# For Phi-4, we don't need an API key
api_key = "not-needed-for-phi4"
# Submit button with icon
submit_button = st.button("🚀 Analyze Video")
# Main content area for video file
if input_source == "Video File" and uploaded_file is not None:
# Display video info
st.markdown("", unsafe_allow_html=True)
# Check if we're using a sample file or an uploaded file
if isinstance(uploaded_file, str) and os.path.exists(uploaded_file):
# This is a sample file from the directory
video_path = uploaded_file
st.success(f"Using sample video: {os.path.basename(video_path)}")
else:
# This is an uploaded file
# Save uploaded file to a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.mp4') as tmp_file:
tmp_file.write(uploaded_file.getvalue())
video_path = tmp_file.name
# Get video metadata
# For video files, use the default backend instead of DirectShow
cap = cv2.VideoCapture(video_path)
# Don't set MJPG format for video files as it can interfere with proper decoding
# cap.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc('M','J','P','G'))
# Try to get video properties
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Prevent division by zero, but only show warning for live streams
# For video files, this is likely an actual error
if fps <= 0:
# Check if this is a video file (not a webcam/stream)
if isinstance(video_path, str) and os.path.exists(video_path):
# This is a file that exists but has FPS issues
fps = 30.0 # Use a default value
st.warning(f"Could not determine frame rate for video file: {os.path.basename(video_path)}. Using default value of 30 FPS.")
else:
# This is likely a webcam or stream
fps = 30.0
st.info("Using default frame rate of 30 FPS for live stream.")
duration = frame_count / fps
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
# Display video metadata in a nicer format
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("⏱️
", unsafe_allow_html=True)
st.metric("Duration", f"{duration:.2f} seconds")
with col2:
st.markdown("🎞️
", unsafe_allow_html=True)
st.metric("Total Frames", frame_count)
with col3:
st.markdown("📐
", unsafe_allow_html=True)
st.metric("Resolution", f"{width}x{height}")
# Display estimated frames to process
estimated_frames = frame_count // (skip_frames + 1) + 1
st.info(f"With current settings, approximately {estimated_frames} frames will be processed.")
# Main content area for live stream
elif input_source == "Live Stream" and stream_source is not None:
# Display live stream info
st.markdown("", unsafe_allow_html=True)
# Display stream source info
if stream_source == 0:
st.info("Using default webcam as the stream source.")
else:
st.info(f"Using stream URL: {stream_source}")
# Display estimated frames to process
st.info(f"Will process up to {max_frames} frames with a skip rate of {skip_frames}.")
# Show a placeholder for the live stream
st.markdown("Live stream preview will appear here during processing
", unsafe_allow_html=True)
# Process video or stream when submit button is clicked
if submit_button:
if not api_key and not use_phi4:
st.error("⚠️ Please enter your OpenAI API key")
elif input_source == "Video File" and uploaded_file is None:
st.error("⚠️ Please upload a video file")
elif input_source == "Live Stream" and stream_source is None:
st.error("⚠️ Please provide a valid stream source")
else:
try:
# Initialize detector based on selected model
if use_phi4:
with st.spinner("Loading Phi-4 model... This may take a while if downloading for the first time."):
detector = Phi4AnomalyDetector()
st.success("Phi-4 model loaded successfully!")
else:
detector = VideoAnomalyDetector(api_key, model_value)
# Progress bar and status
st.markdown("", unsafe_allow_html=True)
progress_bar = st.progress(0)
status_text = st.empty()
# Create a callback function to update progress
def update_progress(current, total):
if total == -1:
# Continuous mode
status_text.text(f"Processed {current} frames (continuous mode)...")
else:
# Normal mode with a known total
if total > 0:
progress = current / total
progress_bar.progress(progress)
else:
# Handle case where total is zero
progress_bar.progress(0)
status_text.text(f"Processing frame {current+1} of {total if total > 0 else '?'}...")
# Process the video or stream
start_time = time.time()
if input_source == "Video File":
results = detector.process_video(video_path, skip_frames, prompt, analysis_depth_value, update_progress)
print(f"Results: {results}")
# Results will be displayed after processing
else: # Live Stream
if capture_mode == "Frame Count Limit":
# Process with frame count limit (original behavior)
results = detector.process_live_stream(stream_source, skip_frames, prompt, analysis_depth_value, max_frames, update_progress)
# Results will be displayed after processing
else: # Time Interval mode
# Create a placeholder for continuous results
results_container = st.empty()
# Reset stop request flag at the beginning of processing
st.session_state.stop_requested = False
# Create a stop button outside the loop
st.button("Stop Capture", key="stop_continuous_main", on_click=request_stop)
# Process with time interval (generator mode)
results_generator = detector.process_live_stream(
stream_source, skip_frames, prompt, analysis_depth_value,
None, update_progress, time_interval
)
# Collect results for cumulative analysis if needed
all_results = []
frame_counter = 0
try:
# Process results as they come in
for result in results_generator:
# Check if stop button was pressed
if st.session_state.stop_requested:
st.success("Capture stopped by user")
break
frame_counter += 1
all_results.append(result)
# Display the latest result
with results_container.container():
if analysis_depth_value == "granular":
# For granular analysis, show the latest frame result
st.markdown(f"### Frame {frame_counter}")
display_single_result(result)
# Send notification if anomaly detected and notifications are enabled
if result.get("anomaly_detected", False) and st.session_state.notification_type and st.session_state.notification_contact:
# Create notification message
anomaly_type = result.get("anomaly_type", "Unknown")
anomaly_message = f"Anomaly detected in live stream (Frame {frame_counter}).\n"
anomaly_message += f"Anomaly type: {anomaly_type}\n\n"
# Add analysis details
analysis_text = None
for key in ["analysis", "text", "description"]:
if key in result and result[key]:
analysis_text = result[key]
break
if analysis_text:
anomaly_message += f"Analysis: {analysis_text[:500]}..."
# Send notification
with st.spinner("Sending notification about detected anomaly..."):
notification_sent = send_notification(
st.session_state.notification_type,
st.session_state.notification_contact,
anomaly_message,
result.get("frame")
)
if notification_sent:
st.success(f"Notification sent to {st.session_state.notification_contact} via {st.session_state.notification_type.capitalize()}")
else:
st.error(f"Failed to send notification. Please check your {st.session_state.notification_type} settings.")
else:
# For cumulative analysis, we get periodic updates
st.markdown(f"### Cumulative Analysis (Updated)")
display_single_result(result)
# Send notification if anomaly detected and notifications are enabled
if result.get("anomaly_detected", False) and st.session_state.notification_type and st.session_state.notification_contact:
# Create notification message
anomaly_type = result.get("anomaly_type", "Unknown")
anomaly_message = f"Anomaly detected in live stream (Cumulative Analysis).\n"
anomaly_message += f"Anomaly type: {anomaly_type}\n\n"
# Add analysis details
analysis_text = None
for key in ["analysis", "text", "description"]:
if key in result and result[key]:
analysis_text = result[key]
break
if analysis_text:
anomaly_message += f"Analysis: {analysis_text[:500]}..."
# Get a frame for the notification if available
anomaly_image = None
if "frames" in result and result["frames"]:
anomaly_image = result["frames"][0]
# Send notification
with st.spinner("Sending notification about detected anomaly..."):
notification_sent = send_notification(
st.session_state.notification_type,
st.session_state.notification_contact,
anomaly_message,
anomaly_image
)
if notification_sent:
st.success(f"Notification sent to {st.session_state.notification_contact} via {st.session_state.notification_type.capitalize()}")
else:
st.error(f"Failed to send notification. Please check your {st.session_state.notification_type} settings.")
# Sleep briefly to allow UI updates
time.sleep(0.1)
except StopIteration:
if not st.session_state.stop_requested:
st.info("Stream ended")
# Final results
if analysis_depth_value == "granular":
results = all_results
else:
results = all_results[-1] if all_results else None
end_time = time.time()
# Calculate processing time
processing_time = end_time - start_time
st.success(f"Processing completed in {processing_time:.2f} seconds")
# Check if notifications are enabled and if anomalies were detected
if st.session_state.notification_type and st.session_state.notification_contact:
# Check if anomalies were detected
anomalies_detected = False
anomaly_image = None
anomaly_message = ""
if analysis_depth_value == "granular":
# For granular analysis, check if any frame has an anomaly
anomaly_frames = [r for r in results if r.get("anomaly_detected", False)]
if anomaly_frames:
anomalies_detected = True
# Get the first anomaly frame for the notification
first_anomaly = anomaly_frames[0]
anomaly_image = first_anomaly.get("frame")
# Create notification message
anomaly_types = set(r.get("anomaly_type", "Unknown") for r in anomaly_frames)
anomaly_message = f"Anomaly detected in {len(anomaly_frames)} out of {len(results)} frames.\n"
anomaly_message += f"Anomaly types: {', '.join(anomaly_types)}\n\n"
# Add details of the first anomaly
analysis_text = None
for key in ["analysis", "text", "description"]:
if key in first_anomaly and first_anomaly[key]:
analysis_text = first_anomaly[key]
break
if analysis_text:
anomaly_message += f"Analysis of first anomaly: {analysis_text[:500]}..."
else:
# For cumulative analysis, check the overall result
if results.get("anomaly_detected", False):
anomalies_detected = True
# Get a frame for the notification if available
if "frames" in results and results["frames"]:
anomaly_image = results["frames"][0]
# Create notification message
anomaly_type = results.get("anomaly_type", "Unknown")
anomaly_message = f"Anomaly detected in video analysis.\n"
anomaly_message += f"Anomaly type: {anomaly_type}\n\n"
# Add analysis details
analysis_text = None
for key in ["analysis", "text", "description"]:
if key in results and results[key]:
analysis_text = results[key]
break
if analysis_text:
anomaly_message += f"Analysis: {analysis_text[:500]}..."
# Send notification if anomalies were detected
if anomalies_detected:
with st.spinner("Sending notification about detected anomalies..."):
notification_sent = send_notification(
st.session_state.notification_type,
st.session_state.notification_contact,
anomaly_message,
anomaly_image
)
if notification_sent:
st.success(f"Notification sent to {st.session_state.notification_contact} via {st.session_state.notification_type.capitalize()}")
else:
st.error(f"Failed to send notification. Please check your {st.session_state.notification_type} settings.")
# Only display results here if we're not in time interval mode
# (time interval mode displays results as they come in)
if not (input_source == "Live Stream" and capture_mode == "Time Interval (Continuous)"):
# Display the results without an additional header
display_results(results, analysis_depth_value)
# Download results button
if results:
try:
# Convert results to JSON using our custom encoder
results_json = json.dumps(results, indent=2, cls=NumpyEncoder)
# Create a download button
st.download_button(
label="Download Results as JSON",
data=results_json,
file_name="anomaly_detection_results.json",
mime="application/json"
)
except Exception as e:
st.warning(f"Could not create downloadable results: {str(e)}")
st.info("This is usually due to large image data in the results. The analysis is still valid.")
# Clean up the temporary file if using a video file
if input_source == "Video File" and 'video_path' in locals():
# Only delete the file if it's a temporary file, not a sample file
if not isinstance(uploaded_file, str):
os.unlink(video_path)
except Exception as e:
st.error(f"⚠️ An error occurred: {str(e)}")
if input_source == "Video File" and 'video_path' in locals():
# Only delete the file if it's a temporary file, not a sample file
if not isinstance(uploaded_file, str):
os.unlink(video_path)
# Instructions when no file is uploaded or stream is selected
if (input_source == "Video File" and uploaded_file is None) or (input_source == "Live Stream" and stream_source is None) or not submit_button:
# Using HTML component to properly render the HTML
model_options_html = ""
if PHI4_AVAILABLE:
model_options_html += "Phi-4 - Microsoft's multimodal model, runs locally"
instructions_html = f"""
📝 How to use this application
- Select an input source:
- Video File - Upload a video file for analysis
- Live Stream - Connect to a webcam or IP camera stream
- Select an AI model for analysis:
- GPT-4o-mini - Faster and more cost-effective
- GPT-4o - Most powerful model with highest accuracy
{model_options_html}
- Set the number of frames to skip - higher values process fewer frames
- Choose an analysis depth:
- Granular - Analyzes each frame individually
- Cumulative - Provides an overall summary with key frames
- Enter a prompt describing what anomaly to look for
- Enter your OpenAI API key with access to the selected model (not needed for Phi-4)
- Click "Analyze Video" to start processing
The application will extract frames from your video or stream, analyze them using the selected AI model, and display the results with clear indicators for detected anomalies.
"""
components.html(instructions_html, height=500)
# Footer
st.markdown("---")
st.markdown("", unsafe_allow_html=True)