# -*- coding: utf-8 -*- """DistilBERT.ipynb Automatically generated by Colab. Original file is located at https://colab.research.google.com/drive/1qXwFT-lCqgfmQYxeJ7cb-iuvTLqLkiim """ #DISTILLBERT RUN 3 , added weight_decay=0.01 import pandas as pd import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data import Dataset, DataLoader from transformers import DistilBertTokenizer, DistilBertForSequenceClassification from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from transformers import BertTokenizer # Load dataset file_path = 'spam_ham_dataset.csv' df = pd.read_csv(file_path) # Convert labels to numeric df['label_num'] = df['label'].map({'ham': 0, 'spam': 1}) # Load tokenizer tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') # Tokenize dataset encodings = tokenizer(df['text'].tolist(), padding=True, truncation=True, max_length=128, return_tensors="pt") labels = torch.tensor(df['label_num'].values) # Custom Dataset class SpamDataset(Dataset): def __init__(self, encodings, labels): self.encodings = encodings self.labels = labels def __len__(self): return len(self.labels) def __getitem__(self, idx): item = {key: val[idx] for key, val in self.encodings.items()} item['labels'] = torch.tensor(self.labels[idx], dtype=torch.long) return item # Create dataset dataset = SpamDataset(encodings, labels) # Split dataset (80% train, 20% validation) train_size = int(0.8 * len(dataset)) val_size = len(dataset) - train_size train_dataset, val_dataset = torch.utils.data.random_split(dataset, [train_size, val_size]) # DataLoader with batch size def collate_fn(batch): keys = batch[0].keys() return {key: torch.stack([b[key] for b in batch]) for key in keys} train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True, collate_fn=collate_fn) val_loader = DataLoader(val_dataset, batch_size=16, shuffle=False, collate_fn=collate_fn) # Load DistilBERT model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased", num_labels=2) model.to(device) # Define optimizer and loss function optimizer = optim.AdamW(model.parameters(), lr=5e-5, weight_decay=0.01) loss_fn = nn.CrossEntropyLoss() # Training Loop EPOCHS = 10 for epoch in range(EPOCHS): model.train() total_loss = 0 for batch in train_loader: optimizer.zero_grad() inputs = {key: val.to(device) for key, val in batch.items()} labels = inputs.pop("labels").to(device) outputs = model(**inputs) loss = loss_fn(outputs.logits, labels) loss.backward() optimizer.step() total_loss += loss.item() avg_loss = total_loss / len(train_loader) print(f"Epoch {epoch+1}, Loss: {avg_loss:.4f}") # Save trained model torch.save(model.state_dict(), "distilbert_spam_model.pt") # Evaluation model.eval() correct = 0 total = 0 with torch.no_grad(): for batch in val_loader: inputs = {key: val.to(device) for key, val in batch.items()} labels = inputs.pop("labels").to(device) outputs = model(**inputs) predictions = torch.argmax(outputs.logits, dim=1) correct += (predictions == labels).sum().item() total += labels.size(0) accuracy = correct / total print(f"Validation Accuracy: {accuracy:.4f}")