lhoestq's picture
lhoestq HF staff
initial app
2c1a98c
raw
history blame
6.62 kB
from functools import lru_cache
import duckdb
import gradio as gr
import pandas as pd
import requests
from duckdb import DuckDBPyRelation
from duckdb.typing import DuckDBPyType
from huggingface_hub import HfApi
Table = DuckDBPyRelation
Dtype = DuckDBPyType
READ_PARQUET_FUNCTIONS = ("dd.read_parquet", "pd.read_parquet")
EMPTY_TABLE = duckdb.sql("SELECT null as col_1, null as col_2, null as col_3, null as col_4 FROM range(10)")
PAGE_SIZE = 100
NUM_TRENDING_DATASETS = 10
NUM_USER_DATASETS = 10
css = """
.transparent-dropdown, .transparent-dropdown .container .wrap, .transparent-accordion {
background: var(--body-background-fill);
}
.gradio-container {
padding: var(--size-4) 0 !important;
max-width: 98% !important;
}
"""
@lru_cache(maxsize=3)
def cached_duckdb_sql(query: str) -> Table:
return duckdb.sql(query)
def to_json_df(tbl: Table) -> pd.DataFrame:
query = ", ".join("nullif(([" + col + "]::JSON)[0]::VARCHAR, 'null') as " + col for col in tbl.columns)
return duckdb.sql(f"SELECT {query} FROM tbl").df()
def from_json_df(df: pd.DataFrame, dtypes: list[Dtype]) -> Table:
query = ", ".join("(ifnull(" + col + ", 'null')::JSON)::" + dtype + " as " + col for col, dtype in zip(df.columns, dtypes))
return duckdb.sql(f"SELECT {query} FROM df")
with gr.Blocks(css=css) as demo:
loading_codes_json = gr.JSON(visible=False)
with gr.Row():
with gr.Column():
gr.Markdown("# <p style='text-align:center;'>πŸ€— (WIP) Hugging Face Dataset Spreadsheets πŸ“</p>\n\n<p style='text-align:center;'>Edit any dataset on Hugging Face (full list <a href='https://huggingface.co/datasets' target='_blank'>here</a>)")
with gr.Group():
with gr.Row():
dataset_dropdown = gr.Dropdown(label="Dataset", allow_custom_value=True, scale=10)
subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown")
split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown")
gr.LoginButton()
dataframe = gr.DataFrame(to_json_df(EMPTY_TABLE), interactive=True, wrap=True)
def show_subset_dropdown(dataset: str):
if dataset and "/" not in dataset.strip().strip("/"):
return []
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_PARQUET_FUNCTIONS] or [[]])[0] or []
subsets = [loading_code["config_name"] for loading_code in loading_codes]
subset = (subsets or [""])[0]
return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes
def show_split_dropdown(subset: str, loading_codes: list[dict]):
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
split = (splits or [""])[0]
return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset))
def show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]):
pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0]
if dataset and subset and split and pattern:
tbl = cached_duckdb_sql(f"SELECT * FROM 'hf://datasets/{dataset}/{pattern}' LIMIT {PAGE_SIZE}")
else:
tbl = EMPTY_TABLE
return dict(value=to_json_df(tbl))
@demo.load(outputs=[dataset_dropdown, loading_codes_json, subset_dropdown, split_dropdown, dataframe])
def _fetch_datasets(request: gr.Request, oauth_token: gr.OAuthToken | None):
api = HfApi(token=oauth_token.token if oauth_token else None)
datasets = list(api.list_datasets(limit=NUM_TRENDING_DATASETS, sort="trendingScore", direction=-1, filter=["format:parquet"]))
if oauth_token and (user := api.whoami().get("name")):
datasets += list(api.list_datasets(limit=NUM_USER_DATASETS, sort="trendingScore", direction=-1, filter=["format:parquet"], author=user))
dataset = request.query_params.get("dataset") or datasets[0].id
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
input_dataframe = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes)
return {
dataset_dropdown: gr.Dropdown(choices=[dataset.id for dataset in datasets], value=dataset),
loading_codes_json: loading_codes,
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
dataframe: gr.DataFrame(**input_dataframe),
}
@dataset_dropdown.select(inputs=dataset_dropdown, outputs=[loading_codes_json, subset_dropdown, split_dropdown, dataframe])
def _show_subset_dropdown(dataset: str):
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
input_dataframe = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes)
return {
loading_codes_json: loading_codes,
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
dataframe: gr.DataFrame(**input_dataframe),
}
@subset_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, loading_codes_json], outputs=[split_dropdown, dataframe])
def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]):
splits = show_split_dropdown(subset, loading_codes)
input_dataframe = show_input_dataframe(dataset, subset, splits["value"], loading_codes)
return {
split_dropdown: gr.Dropdown(**splits),
dataframe: gr.DataFrame(**input_dataframe),
}
@split_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json], outputs=[dataframe])
def _show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame:
input_dataframe = show_input_dataframe(dataset, subset, split, loading_codes)
return {
dataframe: gr.DataFrame(**input_dataframe),
}
if __name__ == "__main__":
demo.launch()