from functools import lru_cache import duckdb import gradio as gr import pandas as pd import requests from duckdb import DuckDBPyRelation from duckdb.typing import DuckDBPyType from huggingface_hub import HfApi Table = DuckDBPyRelation Dtype = DuckDBPyType READ_PARQUET_FUNCTIONS = ("dd.read_parquet", "pd.read_parquet") EMPTY_TABLE = duckdb.sql("SELECT null as col_1, null as col_2, null as col_3, null as col_4 FROM range(10)") PAGE_SIZE = 100 NUM_TRENDING_DATASETS = 10 NUM_USER_DATASETS = 10 css = """ .transparent-dropdown, .transparent-dropdown .container .wrap, .transparent-accordion { background: var(--body-background-fill); } .gradio-container { padding: var(--size-4) 0 !important; max-width: 98% !important; } """ @lru_cache(maxsize=3) def cached_duckdb_sql(query: str) -> Table: return duckdb.sql(query) def to_json_df(tbl: Table) -> pd.DataFrame: query = ", ".join("nullif(([" + col + "]::JSON)[0]::VARCHAR, 'null') as " + col for col in tbl.columns) return duckdb.sql(f"SELECT {query} FROM tbl").df() def from_json_df(df: pd.DataFrame, dtypes: list[Dtype]) -> Table: query = ", ".join("(ifnull(" + col + ", 'null')::JSON)::" + dtype + " as " + col for col, dtype in zip(df.columns, dtypes)) return duckdb.sql(f"SELECT {query} FROM df") with gr.Blocks(css=css) as demo: loading_codes_json = gr.JSON(visible=False) with gr.Row(): with gr.Column(): gr.Markdown("#
🤗 (WIP) Hugging Face Dataset Spreadsheets 📝
\n\nEdit any dataset on Hugging Face (full list here)") with gr.Group(): with gr.Row(): dataset_dropdown = gr.Dropdown(label="Dataset", allow_custom_value=True, scale=10) subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown") split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False, elem_classes="transparent-dropdown") gr.LoginButton() dataframe = gr.DataFrame(to_json_df(EMPTY_TABLE), interactive=True, wrap=True) def show_subset_dropdown(dataset: str): if dataset and "/" not in dataset.strip().strip("/"): return [] resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json() loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_PARQUET_FUNCTIONS] or [[]])[0] or [] subsets = [loading_code["config_name"] for loading_code in loading_codes] subset = (subsets or [""])[0] return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes def show_split_dropdown(subset: str, loading_codes: list[dict]): splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0] split = (splits or [""])[0] return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset)) def show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]): pattern = ([loading_code["arguments"]["splits"][split] for loading_code in loading_codes if loading_code["config_name"] == subset] or [None])[0] if dataset and subset and split and pattern: tbl = cached_duckdb_sql(f"SELECT * FROM 'hf://datasets/{dataset}/{pattern}' LIMIT {PAGE_SIZE}") else: tbl = EMPTY_TABLE return dict(value=to_json_df(tbl)) @demo.load(outputs=[dataset_dropdown, loading_codes_json, subset_dropdown, split_dropdown, dataframe]) def _fetch_datasets(request: gr.Request, oauth_token: gr.OAuthToken | None): api = HfApi(token=oauth_token.token if oauth_token else None) datasets = list(api.list_datasets(limit=NUM_TRENDING_DATASETS, sort="trendingScore", direction=-1, filter=["format:parquet"])) if oauth_token and (user := api.whoami().get("name")): datasets += list(api.list_datasets(limit=NUM_USER_DATASETS, sort="trendingScore", direction=-1, filter=["format:parquet"], author=user)) dataset = request.query_params.get("dataset") or datasets[0].id subsets, loading_codes = show_subset_dropdown(dataset) splits = show_split_dropdown(subsets["value"], loading_codes) input_dataframe = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes) return { dataset_dropdown: gr.Dropdown(choices=[dataset.id for dataset in datasets], value=dataset), loading_codes_json: loading_codes, subset_dropdown: gr.Dropdown(**subsets), split_dropdown: gr.Dropdown(**splits), dataframe: gr.DataFrame(**input_dataframe), } @dataset_dropdown.select(inputs=dataset_dropdown, outputs=[loading_codes_json, subset_dropdown, split_dropdown, dataframe]) def _show_subset_dropdown(dataset: str): subsets, loading_codes = show_subset_dropdown(dataset) splits = show_split_dropdown(subsets["value"], loading_codes) input_dataframe = show_input_dataframe(dataset, subsets["value"], splits["value"], loading_codes) return { loading_codes_json: loading_codes, subset_dropdown: gr.Dropdown(**subsets), split_dropdown: gr.Dropdown(**splits), dataframe: gr.DataFrame(**input_dataframe), } @subset_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, loading_codes_json], outputs=[split_dropdown, dataframe]) def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]): splits = show_split_dropdown(subset, loading_codes) input_dataframe = show_input_dataframe(dataset, subset, splits["value"], loading_codes) return { split_dropdown: gr.Dropdown(**splits), dataframe: gr.DataFrame(**input_dataframe), } @split_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, split_dropdown, loading_codes_json], outputs=[dataframe]) def _show_input_dataframe(dataset: str, subset: str, split: str, loading_codes: list[dict]) -> pd.DataFrame: input_dataframe = show_input_dataframe(dataset, subset, split, loading_codes) return { dataframe: gr.DataFrame(**input_dataframe), } if __name__ == "__main__": demo.launch()