hz2475's picture
init
72f684c
raw
history blame contribute delete
10.1 kB
import os
import importlib
import hashlib
import re
import time
import subprocess
import logging
import shlex
import os
import shutil
import fnmatch
from huggingface_hub import login
import torch
from omegaconf import OmegaConf
dtype_mapping = {
"fp16": torch.float16,
"bf16": torch.bfloat16,
"fp32": torch.float32,
"no": "no"
}
# -------------- Metrics --------------
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def count_parameters(model):
num = sum(p.numel() for p in model.parameters() if p.requires_grad)
for unit in ['', 'K', 'M', 'B', 'T']:
if abs(num) < 1000:
return f"{num:.1f}{unit}"
num /= 1000
return f"{num:.1f}P"
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
def set_env_vars():
HF_HOME = os.environ['HF_HOME']
if HF_HOME is None:
raise EnvironmentError("HF_HOME environment variable is not defined.")
os.makedirs(HF_HOME, exist_ok=True)
# os.environ['TRANSFORMERS_CACHE'] = HF_HOME
os.environ['HUGGINGFACE_HUB_CACHE'] = HF_HOME
os.environ['TORCH_HOME'] = HF_HOME
os.environ['HF_HOME'] = HF_HOME
os.environ['HF_HUB_CACHE'] = HF_HOME
os.environ['PYDEVD_DISABLE_FILE_VALIDATION'] = '1'
os.environ['TOKENIZERS_PARALLELISM']="False"
os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
os.environ['CUDA_LAUNCH_BLOCKING'] = "1"
HF_TOKEN = os.environ['HF_TOKEN']
if HF_TOKEN is None:
raise EnvironmentError("HF_TOKEN environment variable is not defined.")
time.sleep(1) # wait for the token to be saved
login(HF_TOKEN)
def flatten_dict(d, parent_key='', sep='.'):
items = []
for k, v in d.items():
new_key = f"{parent_key}{sep}{k}" if parent_key else k
if isinstance(v, dict):
items.extend(flatten_dict(v, new_key, sep=sep).items())
else:
items.append((new_key, v))
return dict(items)
def hash_dict(exp_dict):
"""Create a hash for an experiment. Credtts to github.com/haven-ai!
Parameters
----------
exp_dict : dict
An experiment, which is a single set of hyper-parameters
Returns
-------
hash_id: str
A unique id defining the experiment
"""
dict2hash = ""
if not isinstance(exp_dict, dict):
raise ValueError("exp_dict is not a dict")
for k in sorted(exp_dict.keys()):
if "." in k:
raise ValueError(". has special purpose")
elif isinstance(exp_dict[k], dict):
v = hash_dict(exp_dict[k])
elif isinstance(exp_dict[k], tuple):
raise ValueError(f"{exp_dict[k]} tuples can't be hashed yet, consider converting tuples to lists")
elif isinstance(exp_dict[k], list) and len(exp_dict[k]) and isinstance(exp_dict[k][0], dict):
v_str = ""
for e in exp_dict[k]:
if isinstance(e, dict):
v_str += hash_dict(e)
else:
raise ValueError("all have to be dicts")
v = v_str
else:
v = exp_dict[k]
dict2hash += str(k) + "/" + str(v)
hash_id = hashlib.md5(dict2hash.encode()).hexdigest()
return hash_id
def get_exp_id(config):
exp_hash_id = hash_dict(dict(config))
if config.model.model_name is not None:
model_name = config.model.model_name.split("/")[1]
else:
model_name = config.model.starcoder_model_name.split("/")[1] + "_" + config.model.image_encoder_type
exp_id = f"{config.project.project}-{config.model.max_length}-{model_name}-{exp_hash_id}"
print("\n" + "Experiment ID: " + exp_id + "\n")
return exp_id
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def instantiate_from_config(config):
if not "target" in config:
raise KeyError("No target in config")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def generate_id_name_eval(args):
id_name = f"len_{args.max_length}"
if args.use_nucleus_sampling:
id_name += "_nucleus"
id_name += f"_top_p_{args.top_p:.2f}"
if args.num_beams > 1:
id_name += "_beam_search"
id_name += f"_beams_{args.num_beams}"
else:
if not args.use_nucleus_sampling:
id_name += "_greedy"
id_name += f"_rep_pen_{args.repetition_penalty:.2f}"
id_name += f"_len_pen_{args.length_penalty:.2f}"
id_name += f"_temp_{args.temperature:.2f}"
return id_name
def get_last_checkpoint(log_dir):
"""Get the last checkpoint.
Returns
-------
last_checkpoint: str
The last checkpoint
"""
pattern = re.compile(r"checkpoint-(\d+)")
files = os.listdir(log_dir)
checkpoints = [f for f in files if pattern.match(f)]
if len(checkpoints) == 0:
return None
steps = [int(pattern.match(c).group(1)) for c in checkpoints]
max_step = max(steps)
last_checkpoint = f"checkpoint-{max_step}"
return os.path.join(log_dir, last_checkpoint)
def model_summary_table(model):
total_params = 0
name_col_width = 20 # set the width of the name column
print("\n")
print(f"| {'Submodel Name'.ljust(name_col_width)} | Number of Parameters |")
print("|" + "-" * name_col_width + "|---------------------|")
for name, module in model.named_children():
num_params = sum(p.numel() for p in module.parameters())
total_params += num_params
print(f"| {name.ljust(name_col_width)} | {num_params:>20,} |")
print("|" + "-" * name_col_width + "|---------------------|")
print(f"| {'Total'.ljust(name_col_width)} | {total_params:>20,} |")
print("\n")
def checkpoint_key(checkpoint_dir):
return int(checkpoint_dir.split("-")[-1])
def subprocess_call(cmd_string):
"""Run a terminal process.
Parameters
----------
cmd_string : str
Command to execute in the terminal
Returns
-------
[type]
Error code or 0 if no error happened
"""
return subprocess.check_output(shlex.split(cmd_string), shell=False, stderr=subprocess.STDOUT).decode("utf-8")
def copy_code(
src_path,
dst_path,
verbose=1,
exclude_list=['__pycache__', 'wandb', '.vscode', '.ipynb_checkpoints', 'project_baselines', 'assets', 'tmp']):
time.sleep(0.5)
if verbose:
print(" > Copying code from %s to %s" % (src_path, dst_path))
os.makedirs(dst_path, exist_ok=True)
rsync_avialable = len(subprocess.run(['which', 'rsync'], capture_output=True, text=True).stdout) > 0
if rsync_avialable: # TODO: validate this works
rsync_cmd_base = f"rsync -av -r -q --delete-before --exclude='.*' --exclude '__pycache__/'"
exclude_options = " ".join([f"--exclude='{filename}'" for filename in exclude_list])
rsync_cmd = f"{rsync_cmd_base} {exclude_options} {src_path} {dst_path}"
if os.path.exists(os.path.join(src_path, ".havenignore")):
rsync_cmd += f" --exclude-from={os.path.join(src_path, '.havenignore')}"
copy_code_cmd = rsync_cmd
subprocess_call(copy_code_cmd)
else:
logging.warning("rsync not available. Doing a hard copy of the code folder.")
for dirpath, dirs, files in os.walk(src_path):
if any(ex in dirpath for ex in exclude_list):
continue
for filename in fnmatch.filter(files, '*'):
src_file = os.path.join(dirpath, filename)
dst_file = os.path.join(dst_path, src_file.replace(src_path+'/', ''))
if src_file == dst_file:
continue
dst_dir = os.path.dirname(dst_file)
if not os.path.exists(dst_dir):
os.makedirs(dst_dir, exist_ok=True)
if not os.path.isfile(dst_file): # check if destination is already a file
shutil.copy2(src_file, dst_file)
time.sleep(0.5)
def get_output_dir():
# get the environment variable if it exists
output_dir = os.environ.get("OUTPUT_DIR", None)
if output_dir is None:
output_dir = os.path.join(os.getcwd(), "logs")
return output_dir
def get_config():
base_conf = OmegaConf.load("configs/models/default.yaml")
cli_conf = OmegaConf.from_cli()
specific_conf = OmegaConf.load(cli_conf.pop('config')) if 'config' in cli_conf else {}
config = OmegaConf.merge(base_conf, specific_conf, cli_conf)
if config.training.resume_from_checkpoint:
if not os.path.exists(os.path.join(os.path.dirname(config.training.resume_from_checkpoint), 'config.yaml')):
config.training.resume_from_checkpoint = get_last_checkpoint(config.training.resume_from_checkpoint)
cli_conf.training.resume_from_checkpoint = config.training.resume_from_checkpoint
pretrained_conf = OmegaConf.load(os.path.join(os.path.dirname(config.training.resume_from_checkpoint), 'config.yaml'))
model_resume_conf = pretrained_conf.pop('model')
specific_conf['model'] = model_resume_conf
config = OmegaConf.merge(config, specific_conf, cli_conf)
return config