Spaces:
Running
Running
Yuxuan-Zhang-Dexter
commited on
Commit
·
f589e51
1
Parent(s):
93c11f0
update ace attorney game in the gradio app
Browse files- app.py +46 -24
- assets/game_video_link.json +3 -2
- assets/model_color.json +8 -7
- assets/news.json +6 -0
- data_visualization.py +6 -2
- leaderboard_utils.py +25 -3
- rank_data_03_25_2025.json +78 -1
- requirements.txt +1 -1
app.py
CHANGED
@@ -16,6 +16,7 @@ from leaderboard_utils import (
|
|
16 |
get_candy_leaderboard,
|
17 |
get_tetris_leaderboard,
|
18 |
get_tetris_planning_leaderboard,
|
|
|
19 |
get_combined_leaderboard,
|
20 |
GAME_ORDER
|
21 |
)
|
@@ -54,7 +55,8 @@ leaderboard_state = {
|
|
54 |
"2048": True,
|
55 |
"Candy Crash": True,
|
56 |
"Tetris (complete)": True,
|
57 |
-
"Tetris (planning only)": True
|
|
|
58 |
},
|
59 |
"previous_details": {
|
60 |
"Super Mario Bros": False,
|
@@ -62,7 +64,8 @@ leaderboard_state = {
|
|
62 |
"2048": False,
|
63 |
"Candy Crash": False,
|
64 |
"Tetris (complete)": False,
|
65 |
-
"Tetris (planning only)": False
|
|
|
66 |
}
|
67 |
}
|
68 |
|
@@ -160,7 +163,8 @@ def update_leaderboard(mario_overall, mario_details,
|
|
160 |
_2048_overall, _2048_details,
|
161 |
candy_overall, candy_details,
|
162 |
tetris_overall, tetris_details,
|
163 |
-
tetris_plan_overall, tetris_plan_details
|
|
|
164 |
global leaderboard_state
|
165 |
|
166 |
# Convert current checkbox states to dictionary for easier comparison
|
@@ -170,7 +174,8 @@ def update_leaderboard(mario_overall, mario_details,
|
|
170 |
"2048": _2048_overall,
|
171 |
"Candy Crash": candy_overall,
|
172 |
"Tetris (complete)": tetris_overall,
|
173 |
-
"Tetris (planning only)": tetris_plan_overall
|
|
|
174 |
}
|
175 |
|
176 |
current_details = {
|
@@ -179,7 +184,8 @@ def update_leaderboard(mario_overall, mario_details,
|
|
179 |
"2048": _2048_details,
|
180 |
"Candy Crash": candy_details,
|
181 |
"Tetris (complete)": tetris_details,
|
182 |
-
"Tetris (planning only)": tetris_plan_details
|
|
|
183 |
}
|
184 |
|
185 |
# Find which game's state changed
|
@@ -235,12 +241,11 @@ def update_leaderboard(mario_overall, mario_details,
|
|
235 |
leaderboard_state["previous_details"][changed_game] = False
|
236 |
if leaderboard_state["current_game"] == changed_game:
|
237 |
leaderboard_state["current_game"] = None
|
238 |
-
# When exiting details view, reset
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
leaderboard_state["previous_details"][game] = False
|
244 |
|
245 |
# Special case: If all games are selected and we're trying to view details
|
246 |
all_games_selected = all(current_overall.values()) and not any(current_details.values())
|
@@ -266,7 +271,8 @@ def update_leaderboard(mario_overall, mario_details,
|
|
266 |
"2048": current_overall["2048"],
|
267 |
"Candy Crash": current_overall["Candy Crash"],
|
268 |
"Tetris (complete)": current_overall["Tetris (complete)"],
|
269 |
-
"Tetris (planning only)": current_overall["Tetris (planning only)"]
|
|
|
270 |
}
|
271 |
|
272 |
# Get the appropriate DataFrame and charts based on current state
|
@@ -282,8 +288,10 @@ def update_leaderboard(mario_overall, mario_details,
|
|
282 |
df = get_candy_leaderboard(rank_data)
|
283 |
elif leaderboard_state["current_game"] == "Tetris (complete)":
|
284 |
df = get_tetris_leaderboard(rank_data)
|
285 |
-
|
286 |
df = get_tetris_planning_leaderboard(rank_data)
|
|
|
|
|
287 |
|
288 |
# Format the DataFrame for display
|
289 |
display_df = prepare_dataframe_for_display(df, leaderboard_state["current_game"])
|
@@ -303,21 +311,23 @@ def update_leaderboard(mario_overall, mario_details,
|
|
303 |
chart = radar_chart
|
304 |
group_bar_chart = radar_chart # Use radar chart instead of bar chart
|
305 |
|
306 |
-
# Return exactly
|
307 |
return (update_df_with_height(display_df), chart, radar_chart, radar_chart,
|
308 |
current_overall["Super Mario Bros"], current_details["Super Mario Bros"],
|
309 |
current_overall["Sokoban"], current_details["Sokoban"],
|
310 |
current_overall["2048"], current_details["2048"],
|
311 |
current_overall["Candy Crash"], current_details["Candy Crash"],
|
312 |
current_overall["Tetris (complete)"], current_details["Tetris (complete)"],
|
313 |
-
current_overall["Tetris (planning only)"], current_details["Tetris (planning only)"]
|
|
|
314 |
|
315 |
def update_leaderboard_with_time(time_point, mario_overall, mario_details,
|
316 |
sokoban_overall, sokoban_details,
|
317 |
_2048_overall, _2048_details,
|
318 |
candy_overall, candy_details,
|
319 |
tetris_overall, tetris_details,
|
320 |
-
tetris_plan_overall, tetris_plan_details
|
|
|
321 |
# Load rank data for the selected time point
|
322 |
global rank_data
|
323 |
new_rank_data = load_rank_data(time_point)
|
@@ -330,7 +340,8 @@ def update_leaderboard_with_time(time_point, mario_overall, mario_details,
|
|
330 |
_2048_overall, _2048_details,
|
331 |
candy_overall, candy_details,
|
332 |
tetris_overall, tetris_details,
|
333 |
-
tetris_plan_overall, tetris_plan_details
|
|
|
334 |
|
335 |
def get_initial_state():
|
336 |
"""Get the initial state for the leaderboard"""
|
@@ -342,7 +353,8 @@ def get_initial_state():
|
|
342 |
"2048": True,
|
343 |
"Candy Crash": True,
|
344 |
"Tetris (complete)": True,
|
345 |
-
"Tetris (planning only)": True
|
|
|
346 |
},
|
347 |
"previous_details": {
|
348 |
"Super Mario Bros": False,
|
@@ -350,7 +362,8 @@ def get_initial_state():
|
|
350 |
"2048": False,
|
351 |
"Candy Crash": False,
|
352 |
"Tetris (complete)": False,
|
353 |
-
"Tetris (planning only)": False
|
|
|
354 |
}
|
355 |
}
|
356 |
|
@@ -364,7 +377,8 @@ def clear_filters():
|
|
364 |
"2048": True,
|
365 |
"Candy Crash": True,
|
366 |
"Tetris (complete)": True,
|
367 |
-
"Tetris (planning only)": True
|
|
|
368 |
}
|
369 |
|
370 |
# Get the combined leaderboard and group bar chart
|
@@ -386,7 +400,8 @@ def clear_filters():
|
|
386 |
True, False, # 2048
|
387 |
True, False, # candy
|
388 |
True, False, # tetris
|
389 |
-
True, False
|
|
|
390 |
|
391 |
def create_timeline_slider():
|
392 |
"""Create a custom timeline slider component"""
|
@@ -874,6 +889,10 @@ def build_app():
|
|
874 |
gr.Markdown("**📋 Tetris (planning)**")
|
875 |
tetris_plan_overall = gr.Checkbox(label="Tetris (planning) Score", value=True)
|
876 |
tetris_plan_details = gr.Checkbox(label="Tetris (planning) Details", value=False)
|
|
|
|
|
|
|
|
|
877 |
|
878 |
# Controls
|
879 |
with gr.Row():
|
@@ -899,7 +918,8 @@ def build_app():
|
|
899 |
"2048": True,
|
900 |
"Candy Crash": True,
|
901 |
"Tetris (complete)": True,
|
902 |
-
"Tetris (planning only)": True
|
|
|
903 |
})
|
904 |
|
905 |
# Format the DataFrame for display
|
@@ -940,7 +960,8 @@ def build_app():
|
|
940 |
_2048_overall, _2048_details,
|
941 |
candy_overall, candy_details,
|
942 |
tetris_overall, tetris_details,
|
943 |
-
tetris_plan_overall, tetris_plan_details
|
|
|
944 |
]
|
945 |
|
946 |
# Update visualizations when checkboxes change
|
@@ -948,7 +969,8 @@ def build_app():
|
|
948 |
# Check if any details checkbox is selected
|
949 |
is_details_view = any([
|
950 |
checkbox_states[1], checkbox_states[3], checkbox_states[5],
|
951 |
-
checkbox_states[7], checkbox_states[9], checkbox_states[11]
|
|
|
952 |
])
|
953 |
|
954 |
# Update visibility of visualization blocks
|
|
|
16 |
get_candy_leaderboard,
|
17 |
get_tetris_leaderboard,
|
18 |
get_tetris_planning_leaderboard,
|
19 |
+
get_ace_attorney_leaderboard,
|
20 |
get_combined_leaderboard,
|
21 |
GAME_ORDER
|
22 |
)
|
|
|
55 |
"2048": True,
|
56 |
"Candy Crash": True,
|
57 |
"Tetris (complete)": True,
|
58 |
+
"Tetris (planning only)": True,
|
59 |
+
"Ace Attorney": True
|
60 |
},
|
61 |
"previous_details": {
|
62 |
"Super Mario Bros": False,
|
|
|
64 |
"2048": False,
|
65 |
"Candy Crash": False,
|
66 |
"Tetris (complete)": False,
|
67 |
+
"Tetris (planning only)": False,
|
68 |
+
"Ace Attorney": False
|
69 |
}
|
70 |
}
|
71 |
|
|
|
163 |
_2048_overall, _2048_details,
|
164 |
candy_overall, candy_details,
|
165 |
tetris_overall, tetris_details,
|
166 |
+
tetris_plan_overall, tetris_plan_details,
|
167 |
+
ace_attorney_overall, ace_attorney_details):
|
168 |
global leaderboard_state
|
169 |
|
170 |
# Convert current checkbox states to dictionary for easier comparison
|
|
|
174 |
"2048": _2048_overall,
|
175 |
"Candy Crash": candy_overall,
|
176 |
"Tetris (complete)": tetris_overall,
|
177 |
+
"Tetris (planning only)": tetris_plan_overall,
|
178 |
+
"Ace Attorney": ace_attorney_overall
|
179 |
}
|
180 |
|
181 |
current_details = {
|
|
|
184 |
"2048": _2048_details,
|
185 |
"Candy Crash": candy_details,
|
186 |
"Tetris (complete)": tetris_details,
|
187 |
+
"Tetris (planning only)": tetris_plan_details,
|
188 |
+
"Ace Attorney": ace_attorney_details
|
189 |
}
|
190 |
|
191 |
# Find which game's state changed
|
|
|
241 |
leaderboard_state["previous_details"][changed_game] = False
|
242 |
if leaderboard_state["current_game"] == changed_game:
|
243 |
leaderboard_state["current_game"] = None
|
244 |
+
# When exiting details view, only reset the current game's state
|
245 |
+
current_overall[changed_game] = True
|
246 |
+
current_details[changed_game] = False
|
247 |
+
leaderboard_state["previous_overall"][changed_game] = True
|
248 |
+
leaderboard_state["previous_details"][changed_game] = False
|
|
|
249 |
|
250 |
# Special case: If all games are selected and we're trying to view details
|
251 |
all_games_selected = all(current_overall.values()) and not any(current_details.values())
|
|
|
271 |
"2048": current_overall["2048"],
|
272 |
"Candy Crash": current_overall["Candy Crash"],
|
273 |
"Tetris (complete)": current_overall["Tetris (complete)"],
|
274 |
+
"Tetris (planning only)": current_overall["Tetris (planning only)"],
|
275 |
+
"Ace Attorney": current_overall["Ace Attorney"]
|
276 |
}
|
277 |
|
278 |
# Get the appropriate DataFrame and charts based on current state
|
|
|
288 |
df = get_candy_leaderboard(rank_data)
|
289 |
elif leaderboard_state["current_game"] == "Tetris (complete)":
|
290 |
df = get_tetris_leaderboard(rank_data)
|
291 |
+
elif leaderboard_state["current_game"] == "Tetris (planning only)":
|
292 |
df = get_tetris_planning_leaderboard(rank_data)
|
293 |
+
elif leaderboard_state["current_game"] == "Ace Attorney":
|
294 |
+
df = get_ace_attorney_leaderboard(rank_data)
|
295 |
|
296 |
# Format the DataFrame for display
|
297 |
display_df = prepare_dataframe_for_display(df, leaderboard_state["current_game"])
|
|
|
311 |
chart = radar_chart
|
312 |
group_bar_chart = radar_chart # Use radar chart instead of bar chart
|
313 |
|
314 |
+
# Return exactly 18 values to match the expected outputs
|
315 |
return (update_df_with_height(display_df), chart, radar_chart, radar_chart,
|
316 |
current_overall["Super Mario Bros"], current_details["Super Mario Bros"],
|
317 |
current_overall["Sokoban"], current_details["Sokoban"],
|
318 |
current_overall["2048"], current_details["2048"],
|
319 |
current_overall["Candy Crash"], current_details["Candy Crash"],
|
320 |
current_overall["Tetris (complete)"], current_details["Tetris (complete)"],
|
321 |
+
current_overall["Tetris (planning only)"], current_details["Tetris (planning only)"],
|
322 |
+
current_overall["Ace Attorney"], current_details["Ace Attorney"])
|
323 |
|
324 |
def update_leaderboard_with_time(time_point, mario_overall, mario_details,
|
325 |
sokoban_overall, sokoban_details,
|
326 |
_2048_overall, _2048_details,
|
327 |
candy_overall, candy_details,
|
328 |
tetris_overall, tetris_details,
|
329 |
+
tetris_plan_overall, tetris_plan_details,
|
330 |
+
ace_attorney_overall, ace_attorney_details):
|
331 |
# Load rank data for the selected time point
|
332 |
global rank_data
|
333 |
new_rank_data = load_rank_data(time_point)
|
|
|
340 |
_2048_overall, _2048_details,
|
341 |
candy_overall, candy_details,
|
342 |
tetris_overall, tetris_details,
|
343 |
+
tetris_plan_overall, tetris_plan_details,
|
344 |
+
ace_attorney_overall, ace_attorney_details)
|
345 |
|
346 |
def get_initial_state():
|
347 |
"""Get the initial state for the leaderboard"""
|
|
|
353 |
"2048": True,
|
354 |
"Candy Crash": True,
|
355 |
"Tetris (complete)": True,
|
356 |
+
"Tetris (planning only)": True,
|
357 |
+
"Ace Attorney": True
|
358 |
},
|
359 |
"previous_details": {
|
360 |
"Super Mario Bros": False,
|
|
|
362 |
"2048": False,
|
363 |
"Candy Crash": False,
|
364 |
"Tetris (complete)": False,
|
365 |
+
"Tetris (planning only)": False,
|
366 |
+
"Ace Attorney": False
|
367 |
}
|
368 |
}
|
369 |
|
|
|
377 |
"2048": True,
|
378 |
"Candy Crash": True,
|
379 |
"Tetris (complete)": True,
|
380 |
+
"Tetris (planning only)": True,
|
381 |
+
"Ace Attorney": True
|
382 |
}
|
383 |
|
384 |
# Get the combined leaderboard and group bar chart
|
|
|
400 |
True, False, # 2048
|
401 |
True, False, # candy
|
402 |
True, False, # tetris
|
403 |
+
True, False, # tetris plan
|
404 |
+
True, False) # ace attorney
|
405 |
|
406 |
def create_timeline_slider():
|
407 |
"""Create a custom timeline slider component"""
|
|
|
889 |
gr.Markdown("**📋 Tetris (planning)**")
|
890 |
tetris_plan_overall = gr.Checkbox(label="Tetris (planning) Score", value=True)
|
891 |
tetris_plan_details = gr.Checkbox(label="Tetris (planning) Details", value=False)
|
892 |
+
with gr.Column():
|
893 |
+
gr.Markdown("**⚖️ Ace Attorney**")
|
894 |
+
ace_attorney_overall = gr.Checkbox(label="Ace Attorney Score", value=True)
|
895 |
+
ace_attorney_details = gr.Checkbox(label="Ace Attorney Details", value=False)
|
896 |
|
897 |
# Controls
|
898 |
with gr.Row():
|
|
|
918 |
"2048": True,
|
919 |
"Candy Crash": True,
|
920 |
"Tetris (complete)": True,
|
921 |
+
"Tetris (planning only)": True,
|
922 |
+
"Ace Attorney": True
|
923 |
})
|
924 |
|
925 |
# Format the DataFrame for display
|
|
|
960 |
_2048_overall, _2048_details,
|
961 |
candy_overall, candy_details,
|
962 |
tetris_overall, tetris_details,
|
963 |
+
tetris_plan_overall, tetris_plan_details,
|
964 |
+
ace_attorney_overall, ace_attorney_details
|
965 |
]
|
966 |
|
967 |
# Update visualizations when checkboxes change
|
|
|
969 |
# Check if any details checkbox is selected
|
970 |
is_details_view = any([
|
971 |
checkbox_states[1], checkbox_states[3], checkbox_states[5],
|
972 |
+
checkbox_states[7], checkbox_states[9], checkbox_states[11],
|
973 |
+
checkbox_states[13] # Ace Attorney details checkbox
|
974 |
])
|
975 |
|
976 |
# Update visibility of visualization blocks
|
assets/game_video_link.json
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
-
{
|
2 |
"sokoban": "https://www.youtube.com/watch?v=59enV32MBUE",
|
3 |
"super_mario": "https://www.youtube.com/watch?v=nixMIJZYAgg",
|
4 |
"2048": "https://www.youtube.com/watch?v=3aYDCSa3AWI",
|
5 |
-
"candy": "https://www.youtube.com/watch?v=b-Uyz3W4yIg"
|
|
|
6 |
}
|
|
|
1 |
+
{
|
2 |
"sokoban": "https://www.youtube.com/watch?v=59enV32MBUE",
|
3 |
"super_mario": "https://www.youtube.com/watch?v=nixMIJZYAgg",
|
4 |
"2048": "https://www.youtube.com/watch?v=3aYDCSa3AWI",
|
5 |
+
"candy": "https://www.youtube.com/watch?v=b-Uyz3W4yIg",
|
6 |
+
"ace_attorney": "https://www.youtube.com/watch?v=q8PMW870yp8"
|
7 |
}
|
assets/model_color.json
CHANGED
@@ -1,17 +1,18 @@
|
|
1 |
{
|
2 |
-
"claude-3-7-sonnet-20250219": "#4A90E2",
|
3 |
"claude-3-7-sonnet-20250219(thinking)": "#2E5C8A",
|
4 |
"claude-3-5-haiku-20241022": "#7FB5E6",
|
5 |
-
"claude-3-5-sonnet-20241022": "#1A4C7C",
|
6 |
"gemini-2.0-flash": "#FF4081",
|
7 |
"gemini-2.0-flash-thinking-exp-1219": "#C2185B",
|
8 |
-
"gemini-2.5-pro-exp-03-25": "#FF80AB",
|
9 |
-
"gpt-4o-2024-11-20": "#00BFA5",
|
10 |
-
"gpt-4.5-preview-2025-02-27": "#00796B",
|
|
|
11 |
"o1-2024-12-17": "#4DB6AC",
|
12 |
-
"o1-mini-2024-09-12": "#26A69A",
|
13 |
"o3-mini-2025-01-31(medium)": "#80CBC4",
|
14 |
"deepseek-v3": "#FFC107",
|
15 |
-
"deepseek-r1": "#FFA000",
|
16 |
"Llama-4-Maverick-17B-128E-Instruct-FP8": "#8E24AA"
|
17 |
}
|
|
|
1 |
{
|
2 |
+
"claude-3-7-sonnet-20250219": "#4A90E2",
|
3 |
"claude-3-7-sonnet-20250219(thinking)": "#2E5C8A",
|
4 |
"claude-3-5-haiku-20241022": "#7FB5E6",
|
5 |
+
"claude-3-5-sonnet-20241022": "#1A4C7C",
|
6 |
"gemini-2.0-flash": "#FF4081",
|
7 |
"gemini-2.0-flash-thinking-exp-1219": "#C2185B",
|
8 |
+
"gemini-2.5-pro-exp-03-25": "#FF80AB",
|
9 |
+
"gpt-4o-2024-11-20": "#00BFA5",
|
10 |
+
"gpt-4.5-preview-2025-02-27": "#00796B",
|
11 |
+
"gpt-4.1-2025-04-14": "#00897B",
|
12 |
"o1-2024-12-17": "#4DB6AC",
|
13 |
+
"o1-mini-2024-09-12": "#26A69A",
|
14 |
"o3-mini-2025-01-31(medium)": "#80CBC4",
|
15 |
"deepseek-v3": "#FFC107",
|
16 |
+
"deepseek-r1": "#FFA000",
|
17 |
"Llama-4-Maverick-17B-128E-Instruct-FP8": "#8E24AA"
|
18 |
}
|
assets/news.json
CHANGED
@@ -1,5 +1,11 @@
|
|
1 |
{
|
2 |
"news": [
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
{
|
4 |
"date": "2025-04-08",
|
5 |
"video_link": "https://www.youtube.com/watch?v=yoEo2Bk7PGA",
|
|
|
1 |
{
|
2 |
"news": [
|
3 |
+
{
|
4 |
+
"date": "2025-04-15",
|
5 |
+
"video_link": "https://www.youtube.com/watch?v=q8PMW870yp8",
|
6 |
+
"twitter_text": "Ace Attorney AI Revolution: O1 & Gemini 2.5 Pro lead in courtroom reasoning, while GPT-4.1 matches older models. Cost analysis reveals Gemini 2.5 Pro's 6-15x efficiency over O1.",
|
7 |
+
"twitter_link": "https://x.com/haoailab"
|
8 |
+
},
|
9 |
{
|
10 |
"date": "2025-04-08",
|
11 |
"video_link": "https://www.youtube.com/watch?v=yoEo2Bk7PGA",
|
data_visualization.py
CHANGED
@@ -24,7 +24,8 @@ GAME_SCORE_COLUMNS = {
|
|
24 |
"2048": "Score",
|
25 |
"Candy Crash": "Average Score",
|
26 |
"Tetris (complete)": "Score",
|
27 |
-
"Tetris (planning only)": "Score"
|
|
|
28 |
}
|
29 |
def get_model_prefix(name):
|
30 |
return name.split('-')[0]
|
@@ -81,6 +82,9 @@ def create_horizontal_bar_chart(df, game_name):
|
|
81 |
elif game_name in ["Tetris (complete)", "Tetris (planning only)"]:
|
82 |
score_col = "Score"
|
83 |
df_sorted = df.sort_values(by=score_col, ascending=True)
|
|
|
|
|
|
|
84 |
else:
|
85 |
return None
|
86 |
|
@@ -315,7 +319,7 @@ def hex_to_rgba(hex_color, alpha=0.2):
|
|
315 |
|
316 |
def create_single_radar_chart(df, selected_games=None, highlight_models=None):
|
317 |
if selected_games is None:
|
318 |
-
selected_games = ['Super Mario Bros', '2048', 'Candy Crash', 'Sokoban']
|
319 |
|
320 |
# Format game names
|
321 |
formatted_games = []
|
|
|
24 |
"2048": "Score",
|
25 |
"Candy Crash": "Average Score",
|
26 |
"Tetris (complete)": "Score",
|
27 |
+
"Tetris (planning only)": "Score",
|
28 |
+
"Ace Attorney": "Score"
|
29 |
}
|
30 |
def get_model_prefix(name):
|
31 |
return name.split('-')[0]
|
|
|
82 |
elif game_name in ["Tetris (complete)", "Tetris (planning only)"]:
|
83 |
score_col = "Score"
|
84 |
df_sorted = df.sort_values(by=score_col, ascending=True)
|
85 |
+
elif game_name == "Ace Attorney":
|
86 |
+
score_col = "Score"
|
87 |
+
df_sorted = df.sort_values(by=score_col, ascending=True)
|
88 |
else:
|
89 |
return None
|
90 |
|
|
|
319 |
|
320 |
def create_single_radar_chart(df, selected_games=None, highlight_models=None):
|
321 |
if selected_games is None:
|
322 |
+
selected_games = ['Super Mario Bros', '2048', 'Candy Crash', 'Sokoban', 'Ace Attorney']
|
323 |
|
324 |
# Format game names
|
325 |
formatted_games = []
|
leaderboard_utils.py
CHANGED
@@ -9,7 +9,8 @@ GAME_ORDER = [
|
|
9 |
"2048",
|
10 |
"Candy Crash",
|
11 |
"Tetris (complete)",
|
12 |
-
"Tetris (planning only)"
|
|
|
13 |
]
|
14 |
|
15 |
def get_organization(model_name):
|
@@ -102,6 +103,21 @@ def get_tetris_planning_leaderboard(rank_data):
|
|
102 |
df = df[["Player", "Organization", "Score", "Steps"]]
|
103 |
return df
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
def calculate_rank_and_completeness(rank_data, selected_games):
|
106 |
# Dictionary to store DataFrames for each game
|
107 |
game_dfs = {}
|
@@ -119,6 +135,8 @@ def calculate_rank_and_completeness(rank_data, selected_games):
|
|
119 |
game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
|
120 |
if selected_games.get("Tetris (planning only)"):
|
121 |
game_dfs["Tetris (planning only)"] = get_tetris_planning_leaderboard(rank_data)
|
|
|
|
|
122 |
|
123 |
# Get all unique players
|
124 |
all_players = set()
|
@@ -165,10 +183,10 @@ def calculate_rank_and_completeness(rank_data, selected_games):
|
|
165 |
elif game == "Candy Crash":
|
166 |
player_score = df[df["Player"] == player]["Average Score"].iloc[0]
|
167 |
rank = len(df[df["Average Score"] > player_score]) + 1
|
168 |
-
elif game
|
169 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
170 |
rank = len(df[df["Score"] > player_score]) + 1
|
171 |
-
elif game == "
|
172 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
173 |
rank = len(df[df["Score"] > player_score]) + 1
|
174 |
|
@@ -227,6 +245,8 @@ def get_combined_leaderboard(rank_data, selected_games):
|
|
227 |
game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
|
228 |
if selected_games.get("Tetris (planning only)"):
|
229 |
game_dfs["Tetris (planning only)"] = get_tetris_planning_leaderboard(rank_data)
|
|
|
|
|
230 |
|
231 |
# Get all unique players
|
232 |
all_players = set()
|
@@ -263,6 +283,8 @@ def get_combined_leaderboard(rank_data, selected_games):
|
|
263 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Average Score"].iloc[0]
|
264 |
elif game in ["Tetris (complete)", "Tetris (planning only)"]:
|
265 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
|
|
|
|
266 |
else:
|
267 |
player_data[f"{game} Score"] = 'n/a'
|
268 |
|
|
|
9 |
"2048",
|
10 |
"Candy Crash",
|
11 |
"Tetris (complete)",
|
12 |
+
"Tetris (planning only)",
|
13 |
+
"Ace Attorney"
|
14 |
]
|
15 |
|
16 |
def get_organization(model_name):
|
|
|
103 |
df = df[["Player", "Organization", "Score", "Steps"]]
|
104 |
return df
|
105 |
|
106 |
+
def get_ace_attorney_leaderboard(rank_data):
|
107 |
+
data = rank_data.get("Ace Attorney", {}).get("results", [])
|
108 |
+
df = pd.DataFrame(data)
|
109 |
+
df = df.rename(columns={
|
110 |
+
"model": "Player",
|
111 |
+
"levels_cracked": "Levels Cracked",
|
112 |
+
"lives_left": "Lives Left",
|
113 |
+
"cracked_details": "Progress",
|
114 |
+
"score": "Score",
|
115 |
+
"note": "Notes"
|
116 |
+
})
|
117 |
+
df["Organization"] = df["Player"].apply(get_organization)
|
118 |
+
df = df[["Player", "Organization", "Levels Cracked", "Lives Left", "Progress", "Score", "Notes"]]
|
119 |
+
return df
|
120 |
+
|
121 |
def calculate_rank_and_completeness(rank_data, selected_games):
|
122 |
# Dictionary to store DataFrames for each game
|
123 |
game_dfs = {}
|
|
|
135 |
game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
|
136 |
if selected_games.get("Tetris (planning only)"):
|
137 |
game_dfs["Tetris (planning only)"] = get_tetris_planning_leaderboard(rank_data)
|
138 |
+
if selected_games.get("Ace Attorney"):
|
139 |
+
game_dfs["Ace Attorney"] = get_ace_attorney_leaderboard(rank_data)
|
140 |
|
141 |
# Get all unique players
|
142 |
all_players = set()
|
|
|
183 |
elif game == "Candy Crash":
|
184 |
player_score = df[df["Player"] == player]["Average Score"].iloc[0]
|
185 |
rank = len(df[df["Average Score"] > player_score]) + 1
|
186 |
+
elif game in ["Tetris (complete)", "Tetris (planning only)"]:
|
187 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
188 |
rank = len(df[df["Score"] > player_score]) + 1
|
189 |
+
elif game == "Ace Attorney":
|
190 |
player_score = df[df["Player"] == player]["Score"].iloc[0]
|
191 |
rank = len(df[df["Score"] > player_score]) + 1
|
192 |
|
|
|
245 |
game_dfs["Tetris (complete)"] = get_tetris_leaderboard(rank_data)
|
246 |
if selected_games.get("Tetris (planning only)"):
|
247 |
game_dfs["Tetris (planning only)"] = get_tetris_planning_leaderboard(rank_data)
|
248 |
+
if selected_games.get("Ace Attorney"):
|
249 |
+
game_dfs["Ace Attorney"] = get_ace_attorney_leaderboard(rank_data)
|
250 |
|
251 |
# Get all unique players
|
252 |
all_players = set()
|
|
|
283 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Average Score"].iloc[0]
|
284 |
elif game in ["Tetris (complete)", "Tetris (planning only)"]:
|
285 |
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
286 |
+
elif game == "Ace Attorney":
|
287 |
+
player_data[f"{game} Score"] = df[df["Player"] == player]["Score"].iloc[0]
|
288 |
else:
|
289 |
player_data[f"{game} Score"] = 'n/a'
|
290 |
|
rank_data_03_25_2025.json
CHANGED
@@ -236,7 +236,7 @@
|
|
236 |
"score_runs": "0;0;0",
|
237 |
"average_score": 0,
|
238 |
"steps": 25,
|
239 |
-
"rank":9
|
240 |
},
|
241 |
{
|
242 |
"model": "Llama-4-Maverick-17B-128E-Instruct-FP8",
|
@@ -320,5 +320,82 @@
|
|
320 |
"rank": 11
|
321 |
}
|
322 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
}
|
324 |
}
|
|
|
236 |
"score_runs": "0;0;0",
|
237 |
"average_score": 0,
|
238 |
"steps": 25,
|
239 |
+
"rank": 9
|
240 |
},
|
241 |
{
|
242 |
"model": "Llama-4-Maverick-17B-128E-Instruct-FP8",
|
|
|
320 |
"rank": 11
|
321 |
}
|
322 |
]
|
323 |
+
},
|
324 |
+
"Ace Attorney": {
|
325 |
+
"runs": 2,
|
326 |
+
"results": [
|
327 |
+
{
|
328 |
+
"model": "o1-2024-12-17",
|
329 |
+
"levels_cracked": "3; 3",
|
330 |
+
"lives_left": "[5, 3, 3, 0],[4, 5, 3, 0]",
|
331 |
+
"cracked_details": "4: 7/8",
|
332 |
+
"rank": 1,
|
333 |
+
"score": 26,
|
334 |
+
"note": "stuck at the end not present evidence"
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"model": "gemini-2.5-pro-exp-03-25",
|
338 |
+
"levels_cracked": "2; 3",
|
339 |
+
"lives_left": "[5,5,0]; [5, 5, 4, 0]",
|
340 |
+
"cracked_details": "4: 0/8",
|
341 |
+
"rank": 2,
|
342 |
+
"score": 20,
|
343 |
+
"note": "failed to present evidence"
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"model": "claude-3-7-sonnet-20250219(thinking)",
|
347 |
+
"levels_cracked": "1; 1",
|
348 |
+
"lives_left": "[3,0]; [5,0]",
|
349 |
+
"cracked_details": "2: 3/9",
|
350 |
+
"rank": 3,
|
351 |
+
"score": 8,
|
352 |
+
"note": "failed to present evidence"
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"model": "claude-3-5-sonnet-20241022",
|
356 |
+
"levels_cracked": "1",
|
357 |
+
"lives_left": "5, 5",
|
358 |
+
"cracked_details": "1:1/8",
|
359 |
+
"rank": 4,
|
360 |
+
"score": 6,
|
361 |
+
"note": "stuck in loop"
|
362 |
+
},
|
363 |
+
{
|
364 |
+
"model": "gpt-4.1-2025-04-14",
|
365 |
+
"levels_cracked": "1",
|
366 |
+
"lives_left": "[4,5]",
|
367 |
+
"cracked_details": "1: 1/8",
|
368 |
+
"rank": 5,
|
369 |
+
"score": 6,
|
370 |
+
"note": "stuck in loop"
|
371 |
+
},
|
372 |
+
{
|
373 |
+
"model": "gemini-2.0-flash-thinking-exp-1219",
|
374 |
+
"levels_cracked": "0",
|
375 |
+
"lives_left": "0",
|
376 |
+
"cracked_details": "1: 4/5",
|
377 |
+
"rank": 6,
|
378 |
+
"score": 4,
|
379 |
+
"note": "stuck in the last option section"
|
380 |
+
},
|
381 |
+
{
|
382 |
+
"model": "deepseek-r1",
|
383 |
+
"levels_cracked": "0",
|
384 |
+
"lives_left": "0",
|
385 |
+
"cracked_details": "1: 4/5",
|
386 |
+
"rank": 7,
|
387 |
+
"score": 4,
|
388 |
+
"note": "stuck in the 3rd evidence present"
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"model": "Llama-4-Maverick-17B-128E-Instruct-FP8",
|
392 |
+
"levels_cracked": "0",
|
393 |
+
"lives_left": "0",
|
394 |
+
"cracked_details": "0:0/5",
|
395 |
+
"rank": 8,
|
396 |
+
"score": 0,
|
397 |
+
"note": "failed to present evidence"
|
398 |
+
}
|
399 |
+
]
|
400 |
}
|
401 |
}
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio
|
2 |
pandas>=2.0.0
|
3 |
matplotlib>=3.7.0
|
4 |
seaborn>=0.12.0
|
|
|
1 |
+
gradio==5.23.3
|
2 |
pandas>=2.0.0
|
3 |
matplotlib>=3.7.0
|
4 |
seaborn>=0.12.0
|