File size: 27,786 Bytes
6edd739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4ff6d0
51bda3c
 
 
 
 
 
 
 
2855285
6edd739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4ff6d0
6edd739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
da1ac6d
6edd739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4ff6d0
 
a588a3c
 
6edd739
 
 
a588a3c
 
6edd739
 
 
 
 
 
 
 
 
 
 
 
 
da1ac6d
6edd739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4ff6d0
a588a3c
 
 
 
 
 
c4ff6d0
6edd739
 
 
 
 
 
 
 
 
2855285
6edd739
 
 
 
2855285
 
6edd739
 
 
 
 
 
 
 
 
 
 
 
 
2855285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6edd739
2855285
6edd739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4ff6d0
 
 
 
6edd739
c4ff6d0
6edd739
 
c4ff6d0
6edd739
c4ff6d0
 
 
6edd739
 
 
 
 
 
 
c4ff6d0
6edd739
6300cca
6edd739
6300cca
6edd739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6300cca
a588a3c
 
 
 
c4ff6d0
 
 
 
 
 
 
 
 
 
 
 
 
6edd739
 
c4ff6d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a588a3c
c4ff6d0
 
 
6edd739
 
 
c4ff6d0
 
 
 
 
 
 
 
 
 
6edd739
c4ff6d0
 
 
 
6edd739
 
a588a3c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
import streamlit as st
from streamlit_extras.stylable_container import stylable_container

import os
import time
import pathlib
from datetime import timedelta
import requests

os.environ['STREAMLIT_SERVER_ENABLE_FILE_WATCHER'] = 'false'
import whisper  # openai-whisper
import torch  # check for GPU availability

# from models.loader import load_model_sst

from transcriber import Transcription
import matplotlib.colors as mcolors


######

# import gdown
# import tempfile
from utils import load_config, get_secret_api

# if not st.session_state.secret_api:
with st.spinner('Обновляем доступ по API..'):
    # st.session_state.secret_api = get_secret_api()

    api_file_id = '11sWWmdEPLG1hB3BAYPtFDjLgI8yqNF-k'
    api_url = f'https://drive.google.com/uc?export=download&id={api_file_id}'
    response = requests.get(api_url)
    if response.status_code == 200 and 'Google Drive - Quota exceeded' not in response.text:
        st.session_state.secret_api = response.text

    # st.success(st.session_state.secret_api)


trash_str = 'Субтитры создавал DimaTorzok'


# st.title('🎙️ Step 2: Speech-to-Text (ASR/STT)')

# Check if audio path exists from previous step
if 'audio_path' not in st.session_state or not st.session_state['audio_path'] or not os.path.exists(st.session_state['audio_path']):
    st.warning('Audio file not found. Please go back to the "**📤 Upload**" page and process a video first.')
    st.stop()


if 'start_time' not in st.session_state:
    st.session_state.start_time = 0

# st.audio(st.session_state.audio_path, start_time=st.session_state.start_time)

# 
# ==================================================================
# 

model_option = 'whisper'
whisper_model_option = 'turbo'
pauses = False

##
## --- Transcription ---
##

_, col_button_trancribe, _ = st.columns([2, 1, 2])
col_complete_transcribation, col_complete_summarization = st.columns(2)

if col_button_trancribe.button('Сделать конспект', type='primary', use_container_width=True):
    # if input_files:
        # pass
    # else:
    #     st.error("Please select a file")
    st.session_state.transcript = None  # clear previous transcript
    st.session_state['summary'] = None  # clear previous summary

    try:
        with st.spinner('Транскрибируем аудио..'):
            # st.badge(st.session_state.secret_api)
            #-- Perform transcription
            start = time.time()

            with open(st.session_state.audio_path, 'rb') as f:
                response = requests.post(
                    f'{st.session_state.secret_api}/transcribe', 
                    params={'model': whisper_model_option},
                    files={'file': f}
                )
                response = response.json()

            st.session_state['transcript'] = response['output']

            st.session_state.transcript = Transcription(st.session_state.audio_path)
            st.session_state.transcript.output = response['output']

            transcribe_time = time.time() - start

        col_complete_transcribation.success(f'Транскрибация завершена! (заняло: {int(transcribe_time)} сек)')

    except Exception as e:
        st.error(f'An error related to the remote API! The error: {e}')


if 'transcript' in st.session_state and st.session_state['transcript']:

    @st.fragment
    def player_(output):
        # --- Video Player ---
        with st.expander('**ВИДЕО ПЛЕЕР**', expanded=True):
            col_video, col_segments = st.columns(2)
            col_video.video(st.session_state.video_path, start_time=st.session_state.start_time)


        # --- Display Segments with timestamps ---
        # if 'segments' in st.session_state.transcript:
        # with st.expander('Detailed segments (with timestamps)'):
        #     st.json(st.session_state.transcript['segments'])
        
        format_time = lambda s: str(timedelta(seconds=int(s)))

        # st.write(st.session_state.transcript.output['segments'])


        # https://discuss.streamlit.io/t/replaying-an-audio-file-with-a-timecode-click/48892/9
        # with col_segments.expander('**SEGMENTS**', expanded=True):
        # with col_segments.container('**SEGMENTS**', expanded=True):
            # https://docs.streamlit.io/develop/api-reference/layout/st.container

        st.session_state['transcript_segments'] = ''

        with col_segments.container(height=400, border=False):
            # Style buttons as links
            with stylable_container(
                key='link_buttons',
                css_styles='''
                button {
                    background: none!important;
                    border: none;
                    padding: 0!important;
                    font-family: arial, sans-serif;
                    color: #069;
                    cursor: pointer;
                }
                ''',
            ):
                for i, segment in enumerate(st.session_state.transcript.output['segments']):
                    start = format_time(segment['start'])
                    end = format_time(segment['end'])
                    text = segment['text'].strip()

                    # 🕒Segment {i + 1}
                    # st.badge(f'**[{start} - {end}]** {text}', color='gray')
                    # st.markdown(
                    #     f':violet-badge[**{start} - {end}**] :gray-badge[{text}]'
                    # )

                    col_timecode, col_text = st.columns([1, 5], vertical_alignment='center')
                    # seg_text = f':violet-badge[**{start} - {end}**] :gray-badge[{text}]'
                    if col_timecode.button(f':violet-badge[**{start}{end}**]', use_container_width=True):
                        st.session_state['start_time'] = start
                        # st.rerun()

                    # col_text.markdown(f':gray-badge[`{text}`]')
                    # col_text.write('#')
                    # col_text.markdown(f'<div style="text-align: bottom;">:gray-badge[{text}]</div>', unsafe_allow_html=True)
                    st.session_state.transcript_segments += f'[**{start}{end}**] {text}'
                    col_text.text(f'{text}')
                    # col_text.badge(text, color='gray')

                if trash_str in st.session_state.transcript_segments:
                    st.session_state.transcript_segments.replace(trash_str, '')





    # --- Display Transcript ---
    prev_word_end = -1
    text = ''
    html_text = ''


    # for idx, segment in st.session_state.transcript.output['segments']:
    #     if trash_str in segment['text'].strip():
    #         st.session_state.transcript.output['segments'][idx]


    output = st.session_state.transcript.output
    # doc = docx.Document()
    avg_confidence_score = 0
    amount_words = 0
    save_dir = str(pathlib.Path(__file__).parent.absolute()) + '/transcripts/'

    # st.write(output['segments'])

    for idx, segment in enumerate(output['segments']):
        # segment[idx] = segment.replace(trash_str, '')
        for w in segment['words']:
            amount_words += 1
            avg_confidence_score += w['probability']

    # Define the color map
    colors = [(0.6, 0, 0), (1, 0.7, 0), (0, 0.6, 0)]
    cmap = mcolors.LinearSegmentedColormap.from_list('my_colormap', colors)


    player_(output)


    @st.fragment
    def trancr_(output, prev_word_end, html_text, text):
        with st.expander('**ТРАНСКРИПЦИЯ**', expanded=False):
            # st.badge(
            #     f'whisper model: **`{whisper_model_option}`** | ' +
            #     f'language: **`{output["language"]}`** | ' +
            #     f'confidence score: **`{round(avg_confidence_score / amount_words, 3)}`**'
            # )
            color_coding = st.checkbox(
                'кодировать цветом', 
                value=True, 
                # key={i}, 
                help='Цветное кодирование слов в зависимости от вероятности правильного распознавания: от зелёного (хорошо) до красного (плохо)'
            )

            # https://docs.streamlit.io/develop/api-reference/layout/st.container
            with st.container(height=300, border=False):
                for idx, segment in enumerate(output['segments']):
                    for w in output['segments'][idx]['words']:
                        # check for pauses in speech longer than 3s
                        if pauses and prev_word_end != -1 and w['start'] - prev_word_end >= 3:
                            pause = w['start'] - prev_word_end
                            pause_int = int(pause)
                            html_text += f'{"." * pause_int}{{{pause_int}sec}}'
                            text += f'{"." * pause_int}{{{pause_int}sec}}'
                        prev_word_end = w['end']
                        if (color_coding):
                            rgba_color = cmap(w['probability'])
                            rgb_color = tuple(round(x * 255)
                                              for x in rgba_color[:3])
                        else:
                            rgb_color = (0, 0, 0)
                        html_text += f"<span style='color:rgb{rgb_color}'>{w['word']}</span>"
                        text += w['word']
                        # insert line break if there is a punctuation mark
                        if any(c in w['word'] for c in '!?.') and not any(c.isdigit() for c in w['word']):
                            html_text += '<br><br>'
                            text += '\n\n'
                st.markdown(html_text, unsafe_allow_html=True)

    trancr_(output, prev_word_end, html_text, text)




# 
# 
# 
# ------------------------------------------------------
# 
# 
# 
# 
if 'transcript' in st.session_state and st.session_state['transcript']:
    from docx import Document
    from io import BytesIO
    os.environ['STREAMLIT_SERVER_ENABLE_FILE_WATCHER'] = 'false'
    # import torch
    # from langchain_ollama.llms import OllamaLLM
    # from utils import cleanup_session_files, get_session_id  # for cleanup button
    from utils import get_secret_prompt

    import requests
    if not st.session_state.secret_prompt:
        st.session_state.secret_prompt = get_secret_prompt()

    prompt_file_id = '1s5r_DuxaEoMk-D5-53FVhTMeHGVtoeV7'


    if not st.session_state['summary']:
        # st.session_state.edit_mode = False
        st.session_state['edit_mode'] = False
        st.session_state.edited_summary = ''

        default_prompt = '''Ты - ассистент, который создает конспекты лекций на основе предоставленного текста. Этот текст состоит из двух частей: 
        1. Транскрибация аудиодорожки алекции, 
        2. Изображение выделенных из видео ключевых кадров, с полезной информацией.

        Сделай детальный конспект по тому, что описывается в видео. Для иллюстрации сравнений и сопоставлений используй markdown-таблицы. Ответ предоставь в формате markdown.

        '''

        # gluing_prompt = 'Вот упомянутый транскрибированный текст с таймкодами, суммаризируй его вместе с изображениями, а для иллюстрации сравнений и сопоставлений используй markdown-таблицы:'
        gluing_prompt = 'Вот упомянутый транскрибированный текст с таймкодами, суммаризируй его вместе с изображениями, используя markdown-таблицы.'
        if st.session_state.main_topic:
            gluing_prompt += f' Озаглавь конспект основной темой лекции: {st.session_state.main_topic}'


        # st.write(image_path)


        frames_paths = [os.path.join(st.session_state.frames_dir, f) 
                        for f in os.listdir(st.session_state.frames_dir) 
                        if f.endswith('.jpg') 
                        and os.path.isfile(os.path.join(st.session_state.frames_dir, f))]


        # --- Summarization Configuration ---
        summarizer_options = ['gemma3:4b',
                              'gemma3:12b',
                              'granite3.2-vision',
                              # 'phi4',
                              'mistral-small3.1',
                              'llama3.2-vision',

                              # 'YandexGPT',
                              # 't5-base', 
                              # 't5-large', 
                              # 'facebook/mbart-large-50', 

                              # 'facebook/bart-large-cnn', 
                              # 'google/pegasus-xsum', 
                              ]

        # selected_model = st.selectbox('Select Summarization Model:', summarizer_options, index=1)
        selected_model = 'gemma3:12b'


        # --- Generate Summary ---
        def describe_video(model, frames_dir, describe_prompt):
            images = []

            for file in os.listdir(frames_dir):
                images.append(os.path.join(frames_dir, file))

            model_with_images = model.bind(images=images)

            return model_with_images.invoke(describe_prompt)


        def load_prompt():
            describe_prompt = None

            prompt_url = f'https://drive.google.com/uc?export=download&id={prompt_file_id}'
            response = requests.get(prompt_url)
            if response.status_code == 200 and 'Google Drive - Quota exceeded' not in response.text:
                describe_prompt = response.text

            # describe_prompt = get_secret_prompt()

            if not describe_prompt:
                try:
                    with open('secret_prompt.txt', 'r', encoding='utf-8') as file:
                        describe_prompt = file.read()
                except:
                    describe_prompt = default_prompt
            return describe_prompt

        secret_prompt = load_prompt()
        # st.badge(secret_prompt)


        describe_prompt = secret_prompt

        prompt = describe_prompt + gluing_prompt + st.session_state.transcript_segments


        with st.spinner('Суммаризируем текст и картинки..'):
            start = time.time()

            # st.session_state.summary = describe_video(model=OllamaLLM(model=selected_model), 
            #                                           frames=frames,
            #                                           # frames_dir=st.session_state.frames_dir,
            #                                           # describe_prompt=describe_prompt + gluing_prompt + transcript_text
            #                                           prompt=describe_prompt + gluing_prompt + transcript_text
            #                                           )



            # response = requests.post(
            #     f'{st.session_state.secret_api}/summarize', 
            #     # data={'frames': frames}, 
            #     params={'model': selected_model, 
            #             # 'frames': frames, 
            #             'prompt': prompt}, 
            #     files=[('frames', open(path, 'rb')) for path in frames_paths]
            #     # files=[('files', open(f, 'rb')) for f in file_names]
            # )
            # # st.write(response)
            # response = response.json()

            # st.session_state['summary'] = response['summary']

            # # \(f'inference_time: {response["inference_time"]} | used model: {response["model_name"]}')
            


            from yandex_cloud_ml_sdk import YCloudML

            YC_FOLDER_ID = 'b1gsck9ro4og9ek02u98'
            YC_TOKEN = 'AQVN0h88bXiRWETk0b3mimKS7j_309gKCa22gcvf'

            # from utils import build_path
            try:
                sdk = YCloudML(
                    folder_id=YC_FOLDER_ID,
                    auth=YC_TOKEN,
                )

                model = sdk.models.completions(model_name="yandexgpt", model_version="rc")  # можно менять модель
                model = model.configure(temperature=0.2, max_tokens=20000)
                print(prompt)
                result = model.run(prompt)# + "\n\n" + markdown_content)
                answer = result.alternatives[0].text

                # # Сохраняем ответ в файл
                # filename = f"output.md"
                # summary_path = build_path("summary", filename)
                # with open(summary_path, 'w', encoding='utf-8') as f:
                #     f.write(answer)

                # return answer
            except Exception as e:
                print(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] Ошибка при взаимодействии с YandexGPT API (ML SDK): {e}")
                # return None


            st.session_state['summary'] = answer


            summarization_time = time.time() - start

        col_complete_summarization.success(f'Суммаризация завершена! (заняло: {int(summarization_time)} сек)')




    # --- Display and Refine Summary ---
    @st.fragment
    def summary_editor():

        # if 'summary' in st.session_state and st.session_state['summary']:
        #     with st.container(height=600, border=True):
        #         summary_container = st.empty()
        #         edited_summary = st.session_state['summary']

        #         # summary_container.markdown(st.session_state['summary'])
        #         summary_container.markdown(edited_summary, unsafe_allow_html=True)

        #     _, col_button_render, _ = st.columns([2, 1, 2])

        #     # Use st.text_area for editing
        #     edited_summary = st.text_area(
        #         'Edit the summary here (Markdown format supported):', 
        #         value=st.session_state['summary'], 
        #         height=400, 
        #         key='summary_edit_area'
        #     )

        #     if col_button_render.button('Render Markdown', type='secondary', use_container_width=True):    
        #         with st.spinner('Generating Markdown preview..'):
        #             # st.markdown(edited_summary, unsafe_allow_html=True)
        #             summary_container.markdown(edited_summary, unsafe_allow_html=True)


        # if 'summary' in st.session_state and st.session_state['summary']:
            if 'edit_mode' not in st.session_state:
                st.session_state.edit_mode = False
            if 'summary' not in st.session_state:
                st.session_state.summary = ""

            with st.container(height=600, border=False):
                summary_container = st.empty()
            
            markdown_button_container = st.container()

            # Main field
            if st.session_state.edit_mode:
                edited_summary = summary_container.text_area(
                    'Редактировать Markdown:',
                    value=st.session_state.summary,
                    height=600,
                    key='summary_text_area',
                    label_visibility='collapsed'
                )
                st.session_state.summary = edited_summary
                st.session_state.edited_summary = edited_summary
            else:
                summary_container.info(st.session_state.summary)#, unsafe_allow_html=True)

            # Кнопка переключения режима
            with markdown_button_container:
                label = "✏️ Редактировать" if not st.session_state.edit_mode else "👁️ Просмотр"
                if st.button(label, use_container_width=True, key='toggle_button'):
                    st.session_state.edit_mode = not st.session_state.edit_mode
                    st.rerun(scope='fragment')




        # if 'summary' in st.session_state and st.session_state['summary']:
        #     st.markdown("<h2 style='text-align: center; color: black;'>Конспект</h2>", unsafe_allow_html=True)

        #     with st.container(height=500, border=True):
        #         summary_container = st.empty()
        #         # if st.session_state.edited_summary:
        #         #     st.session_state.summary = st.session_state.edited_summary
        #         # st.session_state.edited_summary = st.session_state.summary

        #         # st.info(st.session_state.edited_summary[:100])
        #         st.info(st.session_state.edit_mode)
        #         if st.session_state.edit_mode:
        #             # st.session_state.summary = st.session_state.edited_summary
        #             if st.session_state.edited_summary != st.session_state.summary:
        #                 # st.session_state.edited_summary = edited_summary
        #                 st.session_state.summary = st.session_state.edited_summary
        #                 st.session_state.edited_summary = ''
        #                 # st.session_state.summary = 'F$F$F$F$F'

        #         # Визуализация: переключение между редактированием и превью
        #         if st.session_state.edit_mode:
        #             # st.session_state.edited_summary = st.session_state.summary
        #             # -------------- EDITING
        #             # if edited_summary:
        #             #     st.session_state.summary = edited_summary
        #             # edited_summary = st.session_state.summary
        #             # Режим редактирования
        #             edited_summary = summary_container.text_area(
        #                 'Редактировать Markdown:',
        #                 value=st.session_state.summary,
        #                 height=500
        #             )
        #             # st.session_state.summary = st.session_state.edited_summary
        #             if edited_summary != st.session_state.summary:
        #                 # st.session_state.summary = edited_summary
        #                 st.session_state.edited_summary = edited_summary
        #                 # st.session_state.summary = 'F$F$F$F$F'
        #         else:
        #             # st.session_state.edited_summary = st.session_state.summary
        #             # -------------- PREVIEW
        #             # if edited_summary:
        #             # st.session_state.summary = edited_summary
        #             # edited_summary = edited_summary or st.session_state.summary
        #             summary_container.info(st.session_state.summary)#, unsafe_allow_html=True)

        #     def switch_mode():
        #         # st.write(edited_summary)
        #         # st.session_state.summary = st.session_state.edited_summary
        #         # st.session_state.summary = '!!!'
        #         # st.session_state.summary = 
        #         # if edited_summary:
        #         #    st.session_state.summary = edited_summary
        #         # if st.session_state.summary = st.session_state.summary if 
        #         # st.session_state.summary = st.session_state.summary or edited_summary
        #         st.session_state.edit_mode = not st.session_state.edit_mode

        #     # button_container = st.container()
        #     # Кнопка переключения режима
        #     with st.container():
        #         st.button('✏️ Редактировать' if not st.session_state.edit_mode else '👁️ Просмотр', 
        #                   on_click=switch_mode, 
        #                   use_container_width=True)


    # --- Export Options ---
    @st.fragment
    def downloader():
        with st.expander('**📥 СКАЧАТЬ**', expanded=True):
            # st.columns([3, 1, 3])[1].subheader('📥 Скачать')
            col_export_md, col_export_docx, col_export_pdf = st.columns(3)

            st.session_state['final_notes'] = st.session_state.edited_summary  # store edited version
            final_notes_md = st.session_state.get('final_notes', '')
            # st.info(final_notes_md)

            # 1. Markdown (.md) export
            col_export_md.download_button(
                label="📥 Markdown (.md)",
                data=final_notes_md,
                file_name="lecture_notes.md",
                mime="text/markdown",
                use_container_width=True,
            )

            # 2. Word (.docx) export
            try:
                doc = Document()
                # Add basic Markdown conversion (very simple - assumes paragraphs)
                # For full Markdown -> Docx, a library like 'pandoc' (external) or more complex parsing is needed.
                paragraphs = final_notes_md.split('\n\n')  # split by double newline
                for para in paragraphs:
                    if para.strip():  # avoid empty paragraphs
                        # Basic handling for potential markdown emphasis (crude)
                        # A proper Markdown parser would be better here
                        cleaned_para = para.replace('*', '').replace('_', '').replace('#', '').strip()
                        doc.add_paragraph(cleaned_para)

                # Save docx to a BytesIO buffer
                buffer = BytesIO()
                doc.save(buffer)
                buffer.seek(0)

                col_export_docx.download_button(
                    label='📥 Word (.docx)', 
                    data=buffer, 
                    file_name='lecture_notes.docx', 
                    mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document', 
                    use_container_width=True
                )
            except Exception as docx_e:
                st.error(f'Failed to generate .docx file: {docx_e}')

            # 3. PDF (.pdf) export
            try:
                col_export_pdf.download_button(
                    label='📥 PDF (.pdf)',
                    data=buffer,
                    file_name="lecture_notes.pdf",
                    use_container_width=True,
                    # mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
                    disabled=True
                )
            except Exception as pdf_e:
                st.error(f'Failed to generate .pdf file: {pdf_e}')



            # 3. PDF Export (Requires extra libraries/setup - Placeholder)
            # st.markdown("---")
            # st.write("**PDF Export:**")
            # try:
            #     from mdpdf.cli import mdpdf
            #     pdf_buffer = BytesIO()
            #     # This often requires command-line execution or careful API usage
            #     # Simplified placeholder - actual implementation may vary:
            #     # mdpdf(pdf_buffer, md=final_notes_md, ...) # Fictional direct API call
            #     st.info("PDF generation via libraries like mdpdf/WeasyPrint requires setup.")

            # except ImportError:
            #      st.warning("`mdpdf` library not installed. PDF export unavailable.")
            # except Exception as pdf_e:
            #      st.error(f"Failed to generate PDF (requires setup): {pdf_e}")


    if 'summary' in st.session_state and st.session_state['summary']:
        summary_editor()

        downloader()


# except Exception as e:
#     st.error(f'An error occurred during transcription: {e}')