Spaces:
Sleeping
Sleeping
File size: 15,922 Bytes
6edd739 e4e56ea 6edd739 e4e56ea f7ce4f6 e4e56ea 6edd739 e4e56ea b78e1ce e4e56ea 6edd739 e4e56ea 850c648 e4e56ea 850c648 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea 6edd739 e4e56ea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
import streamlit as st
import os
import tempfile
import gdown
import uuid
import tomllib
from pathlib import Path
# import ffmpeg
from moviepy.video.io.VideoFileClip import VideoFileClip
import cv2
import numpy as np
from io import BytesIO
from pydub import AudioSegment
from pydub.silence import detect_leading_silence
import librosa
import librosa.display as lbd
import matplotlib.pyplot as plt
TEMP_DIR = tempfile.mkdtemp()
CONFIG_FILE = 'app_config.toml'
def load_config():
'''Loads configuration from app_config.toml'''
try:
with open(CONFIG_FILE, 'rb') as f:
return tomllib.load(f)
except FileNotFoundError:
print(f'Error: {CONFIG_FILE} not found. Using default settings.')
# Provide default fallback config if needed
return {
"paths": {"output_dir": "output", "temp_dir": "temp_processing"},
"models": {"whisper_model": "base.en", "ocr_languages": ["en"], "summarization_model": "google/pegasus-xsum"},
"settings": {"frame_extraction_interval_seconds": 10, "max_summary_length": 500, "min_summary_length": 100}
}
except Exception as e:
print(f'Error loading config: {e}')
raise # Re-raise after printing
CONFIG = load_config()
def ensure_dir(directory_path):
"""Creates a directory if it doesn't exist."""
Path(directory_path).mkdir(parents=True, exist_ok=True)
def get_secret_api():
with tempfile.NamedTemporaryFile(delete=False) as tmp:
gdown.download(id=CONFIG['links']['secret_api_id'], output=tmp.name, quiet=True, fuzzy=True, use_cookies=True)
tmp.seek(0)
secret_api = tmp.read().decode('utf-8')
tmp_path = tmp.name
tmp.close()
os.remove(tmp_path)
return secret_api
def get_secret_prompt():
with tempfile.NamedTemporaryFile(delete=False) as tmp:
gdown.download(id=CONFIG['links']['secret_prompt_id'], output=tmp.name, quiet=True)
tmp.seek(0)
secret_prompt = tmp.read().decode('utf-8')
tmp_path = tmp.name
tmp.close()
os.remove(tmp_path)
return secret_prompt
def save_uploaded_file(uploaded_file):
"""Saves an uploaded file to a temporary directory."""
if uploaded_file is not None:
# Generate a unique sub-directory for this upload
session_id = get_session_id() # simple way to group files per session/upload
upload_dir = os.path.join(TEMP_DIR, session_id)
os.makedirs(upload_dir, exist_ok=True)
file_path = os.path.join(upload_dir, uploaded_file.name)
with open(file_path, 'wb') as f:
f.write(uploaded_file.getbuffer())
print(f'File saved to: {file_path}') # debugging
return file_path
return None
def get_session_id():
"""Generates or retrieves a unique session ID."""
if 'session_id' not in st.session_state:
st.session_state['session_id'] = str(uuid.uuid4())[:8]
return st.session_state['session_id']
def get_session_dir():
"""Gets the temporary directory path for the current session."""
session_id = get_session_id()
return os.path.join(TEMP_DIR, session_id)
def get_temp_dir():
"""Creates and returns the path to a temporary directory for processing."""
temp_dir = Path(CONFIG['paths']['temp_dir'])
ensure_dir(temp_dir)
# Consider using unique subdirs per run if needed
# processing_subdir = tempfile.mkdtemp(dir=temp_dir)
# return processing_subdir
return str(temp_dir) # Return as string for wider compatibility
def extract_audio(video_path, audio_format='wav'):
"""Extracts audio from video using moviepy."""
try:
session_dir = os.path.dirname(video_path) # assumes video is in session dir
base_name = os.path.splitext(os.path.basename(video_path))[0]
audio_filename = f"{base_name}_audio.{audio_format}"
audio_path = os.path.join(session_dir, audio_filename)
if os.path.exists(audio_path):
print(f"Audio file already exists: {audio_path}")
return audio_path
print(f"Extracting audio from {video_path} to {audio_path}...")
video_clip = VideoFileClip(video_path)
audio_clip = video_clip.audio
if audio_clip is None:
print("No audio track found in the video.")
video_clip.close()
return None
audio_clip.write_audiofile(audio_path, codec='pcm_s16le' if audio_format == 'wav' else 'mp3') # WAV is often better for STT
audio_clip.close()
video_clip.close()
print("Audio extraction complete.")
return audio_path
except Exception as e:
print(f"Error extracting audio: {e}")
# Clean up potentially corrupted file
if 'audio_clip' in locals() and audio_clip:
audio_clip.close()
if 'video_clip' in locals() and video_clip:
video_clip.close()
# Attempt to remove partial file if creation failed mid-way
if os.path.exists(audio_path):
try:
os.remove(audio_path)
except OSError as rm_e:
print(f"Could not remove partial audio file {audio_path}: {rm_e}")
return None
from scenedetect import open_video, SceneManager
from scenedetect.detectors import ContentDetector
def extract_frames_pyscenedetect(video_path, output_dir, threshold=2.0):
# session_dir = os.path.dirname(video_path)
# frames_dir = os.path.join(session_dir, 'frames_pyscenedetect')
# os.makedirs(frames_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True) # ensure the output dir exists
# Init video- and scene- managers
# video_manager = VideoManager([video_path])
video = open_video(video_path)
scene_manager = SceneManager()
scene_manager.add_detector(ContentDetector(threshold=threshold))
# Start analysis
# video_manager.set_downscale_factor()
# video_manager.start()
# scene_manager.detect_scenes(frame_source=video_manager)
scene_manager.detect_scenes(video)
print(scene_manager.get_scene_list())
# Get the scene list
scene_list = scene_manager.get_scene_list()
print(f'Обнаружено {len(scene_list)} смен сцен.')
# Save the scenes switch frames
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f'Error: Could not open video file {video_path}')
return None
extracted_frame_paths = []
for i, (start_time, _) in enumerate(scene_list):
frame_num = start_time.get_frames()
cap.set(cv2.CAP_PROP_POS_FRAMES, frame_num)
success, frame = cap.read()
if success:
timestamp_ms = cap.get(cv2.CAP_PROP_POS_MSEC)
# frame_filename = f'scene_{i + 1:03d}.jpg'
# frame_filename = f'frame_{int(timestamp_ms / 1000):06d}.png' # naming by seconds
frame_filename = f'frame_{int(timestamp_ms / 1000):06d}.jpg' # naming by seconds
frame_path = os.path.join(output_dir, frame_filename)
cv2.imwrite(frame_path, frame)
print(f'[*] Сохранён кадр {frame_num} в {frame_path}')
extracted_frame_paths.append(frame_path)
else:
print(f'[!] Ошибка при чтении кадра {frame_num}')
cap.release()
return output_dir, extracted_frame_paths
print(f'Extracted {len(extracted_frame_paths)} frames to {output_dir}.')
return output_dir, extracted_frame_paths
def extract_frames_interval(video_path, output_dir, interval_sec=5):
'''Extracts frames from video at specified intervals using OpenCV.'''
try:
# session_dir = os.path.dirname(video_path)
# frames_dir = os.path.join(session_dir, 'frames_interval')
# os.makedirs(frames_dir, exist_ok=True)
os.makedirs(output_dir, exist_ok=True) # ensure the output dir exists
print(f'Extracting frames from {video_path} every {interval_sec}s..')
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f'Error: Could not open video file {video_path}')
return None
fps = cap.get(cv2.CAP_PROP_FPS)
if fps == 0:
print('Warning: Could not get FPS, defaulting to 30.')
fps = 30 # provide a default if FPS is not available
frame_interval = int(fps * interval_sec)
frame_count = 0
extracted_frame_paths = []
def extract_frame():
timestamp_ms = cap.get(cv2.CAP_PROP_POS_MSEC)
frame_filename = f'frame_{int(timestamp_ms / 1000):06d}.png' # naming by seconds
frame_path = os.path.join(output_dir, frame_filename)
cv2.imwrite(frame_path, frame)
extracted_frame_paths.append(frame_path)
success = True
while success:
if frame_count % frame_interval == 0:
success, frame = cap.read()
if success:
extract_frame()
else:
# Skip frames efficiently without decoding
for _ in range(frame_interval - 1):
success = cap.grab()
if not success:
break
frame_count += 1
# Now read the desired frame if grab was successful
if success:
success, frame = cap.retrieve()
if success:
extract_frame()
else:
# Handle case where retrieve fails after grab
print(f'Warning: Failed to retrieve frame after grab at frame count {frame_count}')
frame_count += 1
cap.release()
print(f'Extracted {len(extracted_frame_paths)} frames to {output_dir}.')
return output_dir, extracted_frame_paths
except Exception as e:
print(f'Error extracting frames: {e}')
if 'cap' in locals() and cap.isOpened():
cap.release()
return None, []
# --- Add other potential helpers: yt-dlp download, file cleanup etc. ---
def download_youtube(url, output_dir):
"""Downloads YouTube video using yt-dlp."""
import yt_dlp
ydl_opts = {
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
'outtmpl': os.path.join(output_dir, '%(title)s.%(ext)s'),
'noplaylist': True, # download only single video if URL is part of playlist
'progress_hooks': [lambda d: print(d['status'])] # basic progress
}
try:
print(f'Attempting to download YouTube video: {url}')
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
# Try to get the downloaded filename
filename = ydl.prepare_filename(info)
print(f"YouTube video downloaded to: {filename}")
return filename
except Exception as e:
print(f"Error downloading YouTube video: {e}")
return None
def cleanup_session_files(session_id):
"""Removes the temporary directory for a given session."""
session_dir = os.path.join(TEMP_DIR, session_id)
if os.path.exists(session_dir):
import shutil
try:
shutil.rmtree(session_dir)
print(f"Cleaned up temporary files for session: {session_id}")
except Exception as e:
print(f"Error cleaning up session files {session_dir}: {e}")
###
###=== Audio Loading and Processing
###
SAMPLE_RATE = 22050
DURATION = 5
n_mfcc = 13 # number of MFCCs to extract from each sample
n_mels = 128
n_fft = 2048
hop_length = 512
delta_width = 9 # MFCC Delta parameter
def trim_silence(sound, s_thresh=-28.0):
'''Trims silent chunks from beginning and end of the sound'''
duration = len(sound)
start_trim = detect_leading_silence(sound, s_thresh)
end_trim = detect_leading_silence(sound.reverse(), s_thresh)
start = start_trim if start_trim != duration else None
end = duration - end_trim if end_trim != duration else None
return sound[start:end]
def normalize_volume(sound, target_dBFS=-20.0):
'''Normalizes sound and shifts to specified loudness'''
sound = sound.normalize()
difference = target_dBFS - sound.dBFS
return sound.apply_gain(difference)
def proc_raw_audio(audio_data, from_start=0, duration=None, before_end=0):
'''Processes raw audio data and return wav and numpy arrays'''
# Instanciate pydub AudioSegment object from raw audio
audioObj = AudioSegment.from_file(BytesIO(audio_data))
# Convert to mono mode with the desired sample rate
audioObj = audioObj.set_frame_rate(SAMPLE_RATE).set_channels(1)
# Normalize audio volume
audioObj = normalize_volume(audioObj)
# Trim by removing silence from beginning and end of the sound
audioObj = trim_silence(audioObj)
# Cut to the desired duration
start = from_start * 1000
if duration:
end = start + duration * 1000
else:
end = len(audioObj) - before_end * 1000
audioObj = audioObj[start:end]
# Convert AudioSegment to wav format instance
buf = BytesIO()
audioObj.export(buf, format='wav')
audio_wav = buf.getvalue()
# Convert the AudioSegment to signal in form of numpy.array
arr = audioObj.get_array_of_samples()
audio_np = np.array(arr, dtype='float')
# Normalize if specified
# if normalized:
# audio_np = np.array(arr) / np.iinfo(arr.typecode).max
# y /= np.linalg.norm(y)
# return y, sample_rate
return audio_wav, audio_np
###==============================================
def obtain_features(y, sr=22050, duration=5, delta_width=9):
'''Extracts sound features from given signal and returns them as a numpy array'''
# --- MFCC (returns M: np.ndarray [shape=(n_mfcc, t)])
mfcc = librosa.feature.mfcc(y, sr,
n_mfcc=n_mfcc, n_mels=n_mels,
n_fft=n_fft, hop_length=hop_length)
return mfcc
def create_features_array(mfcc):#, mfcc_delta1, mfcc_delta2, spectr_c, spectr_r):
'''Creates wholistic numpy array of means and variances out of given features'''
make_meanvar = lambda mean, var: [item for mv in zip(mean, var) for item in mv]
mean_var_ops = [
(mfcc.mean(axis=1), mfcc.var(axis=1))
]
mfcc_meanvars = sum([make_meanvar(mean, var)
for mean, var in mean_var_ops], [])
# features_array = mfcc_meanvars + spectr_meanvars
features_array = [mfcc_meanvars]
return features_array
# def get_features(y, sr=22050, duration=5, delta_width=9):
# '''Returns numpy array of sound features obtained from signal'''
# return create_features_array(*obtain_features(y, sr, duration, delta_width))
def get_features(y, duration=5, sr=SAMPLE_RATE):
'''Returns numpy array of sound features obtained from signal'''
fig, axes = plt.subplots(1, 2, figsize=(24, 2))
# WAVE PLOT
axes[0].set_title(f'Wave Plot for audio sample at {sr} hz')
axes[0].set_facecolor('#B4E8CF')
lbd.waveshow(y, sr=sr, color='#4300FF', ax=axes[0])
# MELSPEC
melspec = librosa.feature.melspectrogram(y=y, sr=sr)
melspec = librosa.power_to_db(np.abs(melspec), ref=np.max)
axes[1].set_title(f'Mel Spectogram | shape: {melspec.shape}')
lbd.specshow(melspec, cmap='viridis', y_axis='mel', x_axis='time', ax=axes[1])
st.pyplot(fig)
pad_signal = lambda s, v: np.pad(
s,
[(0, 0), (0, max(0, 216 - s.shape[1]))],
constant_values=v
)
# Prepare melspec for use
melspec = pad_signal(melspec, melspec.min())
melspec = melspec.reshape(1, *melspec.shape)
# MFCC
# mfcc = create_features_array(obtain_features(y, sr, duration, delta_width))
# mfcc = np.array(mfcc).reshape(1, -1)
return melspec
# return mfcc
|