conspectum / ui_summarize.py
macsunmood's picture
update app
6edd739
raw
history blame contribute delete
18.8 kB
import streamlit as st
import os
from transformers import pipeline
import time
from docx import Document
from io import BytesIO
os.environ['STREAMLIT_SERVER_ENABLE_FILE_WATCHER'] = 'false'
import torch
from langchain_ollama.llms import OllamaLLM
# from utils import cleanup_session_files, get_session_id # for cleanup button
from utils import get_secret_api, get_secret_prompt
st.session_state.secret_api = get_secret_api()
import requests
# st.session_state.secret_prompt = get_secret_prompt()
prompt_file_id = '1s5r_DuxaEoMk-D5-53FVhTMeHGVtoeV7'
default_prompt = '''Ты - ассистент, который создает конспекты лекций на основе предоставленного текста. Этот текст состоит из двух частей:
1. Транскрибация аудиодорожки видеолекции,
2. Изображение выделенных из видео ключевых кадров, с полезной информацией.
Сделай детальный конспект по тому, что описывается в видео. Для иллюстрации сравнений и сопоставлений используй markdown-таблицы. Ответ предоставь в формате markdown.
'''
# gluing_prompt = 'Вот упомянутый транскрибированный текст с таймкодами, суммаризируй его вместе с изображениями, а для иллюстрации сравнений и сопоставлений используй markdown-таблицы:'
gluing_prompt = 'Вот упомянутый транскрибированный текст с таймкодами, суммаризируй его вместе с изображениями, используя markdown-таблицы.'
if st.session_state.main_topic:
gluing_prompt += f' Основная тема лекции: {st.session_state.main_topic}'
# st.write(image_path)
frames_paths = [os.path.join(st.session_state.frames_dir, f)
for f in os.listdir(st.session_state.frames_dir)
if f.endswith('.jpg')
and os.path.isfile(os.path.join(st.session_state.frames_dir, f))]
# import base64
# # Load and encode JPEG images to base64
# frames = []
# # st.success(os.listdir(st.session_state.frames_dir))
# # st.success([os.path.isfile(f) for f in os.listdir(st.session_state.frames_dir)])# if f.endswith('.jpg') and os.path.isfile(f)])
# for image_path in frames_paths:
# # st.write(image_path)
# with open(os.path.join(st.session_state.frames_dir, image_path), 'rb') as image_file:
# # Read the image and encode it to base64
# encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
# frames.append(encoded_string)
# # st.success(frames)
st.title('📝 Step 4: Lecture Summarization')
# Check if transcript and potentially OCR text are available
transcript_available = 'transcript' in st.session_state and st.session_state['transcript']
frames_available = 'frames_dir' in st.session_state and st.session_state['frames_dir']
if not transcript_available and not frames_available:
st.warning("No text content (Transcript or OCR) found. Please complete previous steps first.")
st.stop()
# st.info("This step combines the generated transcript and OCR text (if available) and creates a summary.")
# --- Combine Sources ---
st.subheader('Sources')
# combined_text = ""
source_info = []
col_source_transcript, col_source_frames = st.columns(2)
if transcript_available:
col_source_transcript.success('✅ Transcript found')
# st.success(len(st.session_state.transcript.__dict__['output']))
# st.success(st.session_state.transcript.__dict__['output'][0]['text'])
# combined_text += '--- Transcript ---\n' + st.session_state.transcript['output'][0]['text'] + '\n\n'
# st.success(st.session_state.transcript.output[0]['text'])
transcript_text = st.session_state.transcript.output['text']
transcript_segments = st.session_state.transcript_segments
# combined_text += '--- Transcript ---\n\n' + transcript_text + '\n\n'
# st.write(combined_text)
source_info.append('Transcript')
with col_source_transcript.expander('Show transcript'):
st.text_area('Transcript', transcript_text, height=200, key='sum_transcript_disp')
else:
col_source_transcript.warning('Transcript not available.')
if frames_available:
col_source_frames.success('✅ Extracted frames found')
# combined_text += "--- OCR results ---\n" + st.session_state['frames_dir']
source_info.append('Frames dir')
# with st.expander('Extracted frames directory'):
# st.text_area('Extracted frames directory', st.session_state['frames_dir'], height=200, key="sum_ocr_disp")
# st.text_area('Extracted frames directory', st.session_state['frames_dir'], height=200, key="sum_ocr_disp")
with col_source_frames.expander('Show frames'):
st.text_input('Extracted frames directory', st.session_state['frames_dir'])
else:
# st.warning('OCR Text not available.')
col_source_frames.warning('Extracted frames not available.')
# combined_text = combined_text.strip()
# if not combined_text:
# st.error("Combined text is empty. Cannot proceed.")
if not transcript_text:
st.error('Transcript text is empty. Cannot proceed.')
st.stop()
# --- Summarization Configuration ---
st.subheader('Summarization Settings')
# Consider different models/pipelines
summarizer_options = ['gemma3:4b',
'gemma3:12b',
'granite3.2-vision',
# 'phi4',
'mistral-small3.1',
'llama3.2-vision',
# 'YandexGPT',
# 't5-base',
# 't5-large',
# 'facebook/mbart-large-50',
# 'facebook/bart-large-cnn',
# 'google/pegasus-xsum',
]
selected_model = st.selectbox('Select Summarization Model:', summarizer_options, index=1)
# # Dynamic length based on input size (example logic)
# # input_length = len(combined_text.split())
# input_length = len(transcript_text.split()) # approx word count
# default_min = max(50, input_length // 10) # suggest min length ~10% of input
# default_max = max(150, input_length // 3) # suggest max length ~30% of input
# min_length = st.slider("Minimum Summary Length (tokens):", min_value=30, max_value=max(500, default_max + 100), value=default_min)
# max_length = st.slider("Maximum Summary Length (tokens):", min_value=50, max_value=max(1000, default_max + 200), value=default_max)
# if min_length >= max_length:
# st.warning("Minimum length should be less than maximum length.")
# # Adjust max_length automatically or prevent proceeding
# max_length = min_length + 50 # simple adjustment
# --- Generate Summary ---
def describe_video(model, frames_dir, describe_prompt):
images = []
for file in os.listdir(frames_dir):
images.append(os.path.join(frames_dir, file))
model_with_images = model.bind(images=images)
return model_with_images.invoke(describe_prompt)
def load_prompt():
describe_prompt = None
prompt_url = f'https://drive.google.com/uc?export=download&id={prompt_file_id}'
response = requests.get(prompt_url)
if response.status_code == 200 and 'Google Drive - Quota exceeded' not in response.text:
describe_prompt = response.text
if not describe_prompt:
try:
with open('ideal_prompt.txt', 'r', encoding='utf-8') as file:
describe_prompt = file.read()
except:
describe_prompt = default_prompt
return describe_prompt
secret_prompt = load_prompt()
# secret_prompt =
with st.expander('**Prompt**', expanded=True):
# col_1, col_2 = st.columns(2)
describe_prompt = st.text_area(label='Промпт', height=300, value=secret_prompt)
_, col_button_summary, _ = st.columns([2, 1, 2])
if col_button_summary.button('Generate Summary', type='primary', use_container_width=True):
st.session_state['summary'] = None # clear previous summary
st.session_state['edit_mode'] = False
with st.spinner(f'Performing summarization with `{selected_model}` model..'):
# st.session_state.summary = describe_video(model=OllamaLLM(model=selected_model),
# frames=frames,
# # frames_dir=st.session_state.frames_dir,
# # describe_prompt=describe_prompt + gluing_prompt + transcript_text
# prompt=describe_prompt + gluing_prompt + transcript_text
# )
# [st.write(path, 'rb') for path in frames_paths]
response = requests.post(
f'{st.session_state.secret_api}/summarize',
# data={'frames': frames},
params={'model': selected_model,
# 'frames': frames,
'prompt': describe_prompt + gluing_prompt + transcript_segments},
# 'prompt': ''},
files=[('frames', open(path, 'rb')) for path in frames_paths]
# files=[('files', open(f, 'rb')) for f in file_names]
)
st.write(response)
response = response.json()
st.badge(f'inference_time: {response["inference_time"]} | used model: {response["model_name"]}')
# st.write(response['form'])
st.session_state['summary'] = response['summary']
# if combined_text:
# with st.spinner(f"Summarizing text using {selected_model}.. Может занять некоторое время (до x2)"):
# try:
# start_time = time.time()
# # Load the pipeline - specify device if possible
# device = 0 if torch.cuda.is_available() else -1 # device=0 for first GPU, -1 for CPU
# summarizer = pipeline("summarization", model=selected_model, device=device)
# # Handle potential long input (simplistic chunking if needed, better models handle longer inputs)
# # Basic check: Transformers often have input limits (e.g., 1024 tokens for BART).
# # A more robust solution involves chunking, summarizing chunks, and combining summaries.
# # For this example, we'll try summarizing directly, but add a warning.
# max_model_input_length = getattr(summarizer.model.config, 'max_position_embeddings', 1024) # get model's max length
# if len(summarizer.tokenizer.encode(combined_text)) > max_model_input_length:
# st.warning(f'Input text might be too long for {selected_model} (max ~{max_model_input_length} tokens).' +
# f'Consider using models designed for longer text or implementing chunking.')
# # Simple Truncation (Not Ideal):
# # truncated_text = summarizer.tokenizer.decode(summarizer.tokenizer.encode(combined_text, max_length=max_model_input_length, truncation=True))
# # summary_result = summarizer(truncated_text, max_length=max_length, min_length=min_length, do_sample=False)
# # Attempt summarization (may error if too long and not handled)
# summary_result = summarizer(combined_text, max_length=max_length, min_length=min_length, do_sample=False)
# st.session_state['summary'] = summary_result[0]['summary_text']
# end_time = time.time()
# st.success(f"Summary generated in {end_time - start_time:.2f} seconds.")
# except Exception as e:
# st.error(f"Error during summarization: {e}")
# st.error("This could be due to model loading issues, insufficient memory, or input text length.")
# if 'summarizer' in locals():
# del summarizer # try to free memory
# if device == 0: torch.cuda.empty_cache()
# else:
# st.error("No text available to summarize.")
# # --- Display and Refine Summary ---
# # st.subheader('Summary')
if 'summary' in st.session_state and st.session_state['summary']:
# with st.container(height=600, border=True):
# summary_container = st.empty()
# edited_summary = st.session_state['summary']
# # summary_container.markdown(st.session_state['summary'])
# summary_container.markdown(edited_summary, unsafe_allow_html=True)
# _, col_button_render, _ = st.columns([2, 1, 2])
# # Use st.text_area for editing
# edited_summary = st.text_area(
# 'Edit the summary here (Markdown format supported):',
# value=st.session_state['summary'],
# height=400,
# key='summary_edit_area'
# )
# if col_button_render.button('Render Markdown', type='secondary', use_container_width=True):
# with st.spinner('Generating Markdown preview..'):
# # st.markdown(edited_summary, unsafe_allow_html=True)
# summary_container.markdown(edited_summary, unsafe_allow_html=True)
# # st.session_state['summary'] = edited_summary # update summary
# # else:
# # st.markdown('', unsafe_allow_html=True)
# Инициализация состояния
if 'edit_mode' not in st.session_state:
st.session_state.edit_mode = False
with st.container(height=500, border=True):
summary_container = st.empty()
edited_summary = st.session_state.summary
# Визуализация: переключение между редактированием и превью
if st.session_state.edit_mode:
# Режим редактирования
edited_summary = summary_container.text_area(
'Редактировать Markdown:',
value=st.session_state.summary,
height=500
)
st.session_state.summary = edited_summary
else:
# Режим превью
summary_container.markdown(st.session_state.summary, unsafe_allow_html=True)
def switch_mode():
st.session_state.edit_mode = not st.session_state.edit_mode
# Кнопка переключения режима
st.button('✏️ Редактировать' if not st.session_state.edit_mode else '👁️ Просмотр',
on_click=switch_mode,
use_container_width=True)
# --- Export Options ---
st.subheader('📥 Export Notes (Download)')
col_export_md, col_export_docx, col_export_pdf = st.columns(3)
st.session_state['final_notes'] = edited_summary # store edited version
# st.session_state['final_notes'] = summary_container # store edited version
final_notes_md = st.session_state.get('final_notes', '')
# st.info(final_notes_md)
# 1. Markdown (.md) export
col_export_md.download_button(
label="📥 Markdown (.md)",
data=final_notes_md,
file_name="lecture_notes.md",
mime="text/markdown",
use_container_width=True,
)
# 2. Word (.docx) export
try:
doc = Document()
doc.add_heading('Lecture Notes Summary', 0)
# Add basic Markdown conversion (very simple - assumes paragraphs)
# For full Markdown -> Docx, a library like 'pandoc' (external) or more complex parsing is needed.
paragraphs = final_notes_md.split('\n\n') # split by double newline
for para in paragraphs:
if para.strip(): # avoid empty paragraphs
# Basic handling for potential markdown emphasis (crude)
# A proper Markdown parser would be better here
cleaned_para = para.replace('*', '').replace('_', '').replace('#', '').strip()
doc.add_paragraph(cleaned_para)
# Save docx to a BytesIO buffer
buffer = BytesIO()
doc.save(buffer)
buffer.seek(0)
col_export_docx.download_button(
label='📥 Word (.docx)',
data=buffer,
file_name='lecture_notes.docx',
mime='application/vnd.openxmlformats-officedocument.wordprocessingml.document',
use_container_width=True
)
except Exception as docx_e:
st.error(f'Failed to generate .docx file: {docx_e}')
# 3. PDF (.pdf) export
try:
col_export_pdf.download_button(
label='📥 PDF (.pdf)',
data=buffer,
file_name="lecture_notes.pdf",
use_container_width=True,
# mime="application/vnd.openxmlformats-officedocument.wordprocessingml.document"
disabled=True
)
except Exception as pdf_e:
st.error(f'Failed to generate .pdf file: {pdf_e}')
# 3. PDF Export (Requires extra libraries/setup - Placeholder)
# st.markdown("---")
# st.write("**PDF Export:**")
# try:
# from mdpdf.cli import mdpdf
# pdf_buffer = BytesIO()
# # This often requires command-line execution or careful API usage
# # Simplified placeholder - actual implementation may vary:
# # mdpdf(pdf_buffer, md=final_notes_md, ...) # Fictional direct API call
# st.info("PDF generation via libraries like mdpdf/WeasyPrint requires setup.")
# except ImportError:
# st.warning("`mdpdf` library not installed. PDF export unavailable.")
# except Exception as pdf_e:
# st.error(f"Failed to generate PDF (requires setup): {pdf_e}")
else:
st.info('Summary has not been generated or is empty.')
# --- Optional: Cleanup Button ---
# st.sidebar.markdown("---")
# if st.sidebar.button("End Session & Clean Up Files"):
# session_id = get_session_id()
# cleanup_session_files(session_id)
# # Clear relevant session state keys
# keys_to_clear = ['video_path', 'audio_path', 'frames_dir', 'transcript', 'summary', 'final_notes', 'extracted_frames', 'session_id']
# for key in keys_to_clear:
# if key in st.session_state:
# del st.session_state[key]
# st.success("Temporary files cleaned and session data cleared.")
# st.info("You can now start a new session from the 'Main' page.")
# # Consider navigating back to Main page or just showing message