Spaces:
Sleeping
Sleeping
import gradio as gr | |
from datasets import load_dataset | |
from difflib import ndiff | |
from semhash import SemHash | |
from semhash.datamodels import DeduplicationResult | |
from model2vec import StaticModel | |
# Default parameters | |
default_dataset_name = "SetFit/amazon_massive_scenario_en-US" | |
default_dataset1_split = "train" | |
default_dataset2_split = "test" | |
default_text_column = "text" | |
default_threshold = 0.9 | |
# Load the model to use | |
model = StaticModel.from_pretrained("minishlab/potion-base-8M") | |
def display_word_differences(x: str, y: str) -> str: | |
""" | |
Display the word-level differences between two texts, formatted to avoid | |
misinterpretation of Markdown syntax. | |
""" | |
diff = ndiff(x.split(), y.split()) | |
formatted_diff = "\n".join(word for word in diff if word.startswith(("+", "-"))) | |
return f"```\n{formatted_diff}\n```" | |
def load_dataset_texts(dataset_name: str, dataset_split: str, text_column: str) -> list[str]: | |
"""Load texts from a specified dataset split.""" | |
ds = load_dataset(dataset_name, split=dataset_split) | |
return [example[text_column] for example in ds] | |
def deduplicate_single_dataset(texts: list[str], threshold: float) -> DeduplicationResult: | |
"""Deduplicate within a single dataset using SemHash, treating each text as a raw string record.""" | |
# Build a SemHash index from the raw texts | |
semhash = SemHash.from_records(records=texts, model=model) | |
# Deduplicate the entire dataset | |
return semhash.self_deduplicate(threshold=threshold) | |
def deduplicate_two_datasets(texts1: list[str], texts2: list[str], threshold: float) -> DeduplicationResult: | |
"""Deduplicate dataset2 against dataset1, both as raw strings, using SemHash.""" | |
# Build SemHash index on dataset1 | |
semhash = SemHash.from_records(records=texts1, model=model) | |
# Deduplicate texts2 against dataset1 | |
return semhash.deduplicate(records=texts2, threshold=threshold) | |
def perform_deduplication( | |
deduplication_type: str, | |
dataset1_name: str, | |
dataset1_split: str, | |
dataset1_text_column: str, | |
dataset2_name: str = "", | |
dataset2_split: str = "", | |
dataset2_text_column: str = "", | |
threshold: float = default_threshold, | |
progress: gr.Progress = gr.Progress(track_tqdm=True) | |
): | |
""" | |
Perform deduplication on one or two datasets using SemHash. This function | |
streams status updates to Gradio for user feedback. | |
""" | |
try: | |
threshold = float(threshold) | |
# Load Dataset 1 | |
yield "Loading Dataset 1...", "" | |
texts1 = load_dataset_texts(dataset1_name, dataset1_split, dataset1_text_column) | |
if deduplication_type == "Single dataset": | |
# Single-dataset deduplication | |
yield "Deduplicating within Dataset 1 (SemHash)...", "" | |
result = deduplicate_single_dataset(texts1, threshold=threshold) | |
# Sort all duplicates in descending order of their highest score | |
for duprec in result.duplicates: | |
duprec.duplicates.sort(key=lambda x: x[1], reverse=True) | |
# Summarize results | |
num_duplicates = len(result.duplicates) | |
deduplicated_count = len(result.deduplicated) | |
total_docs = len(texts1) | |
result_text = ( | |
f"**Total documents (Dataset 1):** {total_docs}\n\n" | |
f"**Duplicates found:** {num_duplicates}\n\n" | |
f"**Unique documents after deduplication:** {deduplicated_count}\n\n" | |
+ "-" * 50 + "\n\n" | |
) | |
# Show example duplicates | |
if num_duplicates > 0: | |
result_text += "**Example duplicates:**\n\n" | |
# Only show duplicates that actually have near-duplicate records | |
duplicates_with_data = [duprec for duprec in result.duplicates if duprec.duplicates] | |
if duplicates_with_data: | |
for duprec in duplicates_with_data[:5]: | |
dup_text = duprec.record | |
orig_text, score = duprec.duplicates[0] | |
differences = display_word_differences(orig_text, dup_text) | |
result_text += ( | |
f"**Original:**\n{orig_text}\n\n" | |
f"**Duplicate:**\n{dup_text}\n\n" | |
f"**Similarity Score:** {score:.4f}\n" | |
f"**Differences:**\n{differences}\n" | |
+ "-" * 50 + "\n\n" | |
) | |
else: | |
result_text += "No near-duplicate details available.\n\n" | |
else: | |
result_text += "No duplicates found." | |
yield "Deduplication completed.", result_text | |
else: | |
# Cross-dataset deduplication | |
yield "Loading Dataset 2...", "" | |
texts2 = load_dataset_texts(dataset2_name, dataset2_split, dataset2_text_column) | |
yield "Deduplicating Dataset 2 against Dataset 1 (SemHash)...", "" | |
result = deduplicate_two_datasets(texts1, texts2, threshold=threshold) | |
# Sort duplicates in descending order of their highest score | |
for duprec in result.duplicates: | |
duprec.duplicates.sort(key=lambda x: x[1], reverse=True) | |
num_duplicates = len(result.duplicates) | |
total_docs2 = len(texts2) | |
deduplicated_count = len(result.deduplicated) | |
result_text = ( | |
f"**Total documents in {dataset2_name}/{dataset2_split}:** {total_docs2}\n\n" | |
f"**Duplicates found in Dataset 2:** {num_duplicates}\n\n" | |
f"**Unique documents after deduplication:** {deduplicated_count}\n\n" | |
+ "-" * 50 + "\n\n" | |
) | |
if num_duplicates > 0: | |
result_text += "**Example duplicates from Dataset 2:**\n\n" | |
# Again, only show duplicates that actually have near-duplicate records | |
duplicates_with_data = [duprec for duprec in result.duplicates if duprec.duplicates] | |
if duplicates_with_data: | |
for duprec in duplicates_with_data[:5]: | |
dup_text = duprec.record # The "duplicate" text from dataset2 | |
orig_text, score = duprec.duplicates[0] | |
differences = display_word_differences(orig_text, dup_text) | |
result_text += ( | |
f"**Original (Dataset 1):**\n{orig_text}\n\n" | |
f"**Duplicate (Dataset 2):**\n{dup_text}\n\n" | |
f"**Similarity Score:** {score:.4f}\n" | |
f"**Differences:**\n{differences}\n" | |
+ "-" * 50 + "\n\n" | |
) | |
else: | |
result_text += "No near-duplicate details available.\n\n" | |
else: | |
result_text += "No duplicates found." | |
yield "Deduplication completed.", result_text | |
except Exception as e: | |
yield f"An error occurred: {e}", "" | |
raise e | |
# --- Gradio App --- | |
with gr.Blocks(theme=gr.themes.Ocean(), css="#status_output { height: 50px; overflow: auto; }") as demo: | |
gr.Markdown("# Semantic Text Deduplication Using SemHash") | |
gr.Markdown(""" | |
This demo showcases **semantic deduplication** using [SemHash](https://github.com/MinishLab/semhash) for HuggingFace datasets, using a [Model2Vec](https://github.com/MinishLab/model2vec) encoder. | |
It can be used to identify duplicate texts within a **single dataset** or across **two datasets**. | |
You can adjust the similarity threshold to control the strictness of the deduplication. | |
**NOTE**: This demo runs on a free CPU backend, so it may be slow for large datasets. | |
For faster results, please run the code locally. | |
""") | |
deduplication_type = gr.Radio( | |
choices=["Cross-dataset", "Single dataset"], | |
label="Deduplication Type", | |
value="Cross-dataset", # default | |
) | |
with gr.Row(): | |
dataset1_name = gr.Textbox(value=default_dataset_name, label="Dataset 1 Name") | |
dataset1_split = gr.Textbox(value=default_dataset1_split, label="Dataset 1 Split") | |
dataset1_text_column = gr.Textbox(value=default_text_column, label="Text Column Name") | |
dataset2_inputs = gr.Column(visible=True) | |
with dataset2_inputs: | |
with gr.Row(): | |
dataset2_name = gr.Textbox(value=default_dataset_name, label="Dataset 2 Name") | |
dataset2_split = gr.Textbox(value=default_dataset2_split, label="Dataset 2 Split") | |
dataset2_text_column = gr.Textbox(value=default_text_column, label="Text Column Name") | |
threshold = gr.Slider(0.0, 1.0, value=default_threshold, label="Similarity Threshold") | |
with gr.Row(): | |
compute_button = gr.Button("Deduplicate") | |
status_output = gr.Markdown(elem_id="status_output") | |
result_output = gr.Markdown() | |
def update_visibility(choice: str): | |
return gr.update(visible=(choice == "Cross-dataset")) | |
deduplication_type.change(update_visibility, inputs=deduplication_type, outputs=dataset2_inputs) | |
compute_button.click( | |
fn=perform_deduplication, | |
inputs=[ | |
deduplication_type, | |
dataset1_name, | |
dataset1_split, | |
dataset1_text_column, | |
dataset2_name, | |
dataset2_split, | |
dataset2_text_column, | |
threshold, | |
], | |
outputs=[status_output, result_output], | |
) | |
demo.launch() | |