Commit
·
4ea6107
1
Parent(s):
fa95ad0
stream app
Browse files- app.py +129 -0
- label_mappings.pkl +3 -0
- requirements.txt +4 -0
- ticket_classification_model.pth +3 -0
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import pickle
|
5 |
+
import pandas as pd
|
6 |
+
from transformers import RobertaTokenizerFast, RobertaModel
|
7 |
+
|
8 |
+
# -------------------------------
|
9 |
+
# Load label mappings
|
10 |
+
with open("label_mappings.pkl", "rb") as f:
|
11 |
+
label_mappings = pickle.load(f)
|
12 |
+
|
13 |
+
label_to_team = label_mappings.get("label_to_team", {})
|
14 |
+
label_to_email = label_mappings.get("label_to_email", {})
|
15 |
+
|
16 |
+
# -------------------------------
|
17 |
+
# Load tokenizer
|
18 |
+
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
|
19 |
+
|
20 |
+
# -------------------------------
|
21 |
+
# Define RoBERTa Model for multi-task classification
|
22 |
+
class RoBertaClassifier(nn.Module):
|
23 |
+
def __init__(self, num_teams, num_emails):
|
24 |
+
super(RoBertaClassifier, self).__init__()
|
25 |
+
self.roberta = RobertaModel.from_pretrained("roberta-base")
|
26 |
+
self.team_classifier = nn.Linear(self.roberta.config.hidden_size, num_teams)
|
27 |
+
self.email_classifier = nn.Linear(self.roberta.config.hidden_size, num_emails)
|
28 |
+
|
29 |
+
def forward(self, input_ids, attention_mask):
|
30 |
+
outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
|
31 |
+
cls_output = outputs.last_hidden_state[:, 0, :]
|
32 |
+
team_logits = self.team_classifier(cls_output)
|
33 |
+
email_logits = self.email_classifier(cls_output)
|
34 |
+
return team_logits, email_logits
|
35 |
+
|
36 |
+
# -------------------------------
|
37 |
+
# Initialize model and load checkpoint
|
38 |
+
num_teams = len(label_to_team)
|
39 |
+
num_emails = len(label_to_email)
|
40 |
+
model = RoBertaClassifier(num_teams, num_emails)
|
41 |
+
|
42 |
+
checkpoint = torch.load("ticket_classification_model.pth", map_location=torch.device("cpu"))
|
43 |
+
filtered_checkpoint = {k: v for k, v in checkpoint.items() if k in model.state_dict()}
|
44 |
+
model.load_state_dict(filtered_checkpoint, strict=False)
|
45 |
+
|
46 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
47 |
+
model.to(device)
|
48 |
+
model.eval()
|
49 |
+
|
50 |
+
# -------------------------------
|
51 |
+
# Prediction function
|
52 |
+
def predict_tickets(ticket_descriptions):
|
53 |
+
predictions = []
|
54 |
+
csv_data = []
|
55 |
+
for idx, description in enumerate(ticket_descriptions, start=1):
|
56 |
+
inputs = tokenizer(
|
57 |
+
description,
|
58 |
+
return_tensors="pt",
|
59 |
+
truncation=True,
|
60 |
+
padding="max_length",
|
61 |
+
max_length=128
|
62 |
+
).to(device)
|
63 |
+
with torch.no_grad():
|
64 |
+
team_logits, email_logits = model(inputs.input_ids, inputs.attention_mask)
|
65 |
+
predicted_team_index = team_logits.argmax(dim=-1).cpu().item()
|
66 |
+
predicted_email_index = email_logits.argmax(dim=-1).cpu().item()
|
67 |
+
predicted_team = label_to_team.get(predicted_team_index, "Unknown Team")
|
68 |
+
predicted_email = label_to_email.get(predicted_email_index, "Unknown Email")
|
69 |
+
predictions.append(
|
70 |
+
f"{idx}. {description}\n - Assigned Team: {predicted_team}\n - Team Email: {predicted_email}\n"
|
71 |
+
)
|
72 |
+
csv_data.append([idx, description, predicted_team, predicted_email])
|
73 |
+
df = pd.DataFrame(csv_data, columns=["Index", "Description", "Assigned Team", "Team Email"])
|
74 |
+
return "\n".join(predictions), df
|
75 |
+
|
76 |
+
# -------------------------------
|
77 |
+
# Streamlit UI
|
78 |
+
st.title("AI Solution for Defect Ticket Classification")
|
79 |
+
st.markdown("""
|
80 |
+
**Supports:** Multi-line text input & CSV upload.
|
81 |
+
**Output:** Text results & downloadable CSV file.
|
82 |
+
**Model:** Fine-tuned **RoBERTa** for classification.
|
83 |
+
""")
|
84 |
+
|
85 |
+
# Choose input method
|
86 |
+
option = st.radio("📝 Choose Input Method", ["Enter Text", "Upload CSV"])
|
87 |
+
|
88 |
+
if option == "Enter Text":
|
89 |
+
text_input = st.text_area(
|
90 |
+
"Enter Ticket Description/Comment/Summary (One per line)",
|
91 |
+
placeholder="Example:\n - Database performance issue\n - Login fails for admin users..."
|
92 |
+
)
|
93 |
+
descriptions = [line.strip() for line in text_input.split("\n") if line.strip()]
|
94 |
+
else:
|
95 |
+
file_input = st.file_uploader("Upload CSV", type=["csv"])
|
96 |
+
descriptions = []
|
97 |
+
if file_input is not None:
|
98 |
+
df_input = pd.read_csv(file_input)
|
99 |
+
if "Description" not in df_input.columns:
|
100 |
+
st.error("⚠️ Error: CSV must contain a 'Description' column.")
|
101 |
+
else:
|
102 |
+
descriptions = df_input["Description"].dropna().tolist()
|
103 |
+
|
104 |
+
# Trigger prediction when the button is clicked
|
105 |
+
if st.button("PREDICT"):
|
106 |
+
if not descriptions:
|
107 |
+
st.error("⚠️ Please provide valid input.")
|
108 |
+
else:
|
109 |
+
with st.spinner("Predicting..."):
|
110 |
+
results, df_results = predict_tickets(descriptions)
|
111 |
+
st.markdown("## Prediction Results")
|
112 |
+
st.text(results)
|
113 |
+
csv_data = df_results.to_csv(index=False).encode('utf-8')
|
114 |
+
st.download_button(
|
115 |
+
label="📥 Download Predictions CSV",
|
116 |
+
data=csv_data,
|
117 |
+
file_name="ticket-predictions.csv",
|
118 |
+
mime="text/csv"
|
119 |
+
)
|
120 |
+
|
121 |
+
# Clear button: simply reloads the app
|
122 |
+
if st.button("CLEAR"):
|
123 |
+
st.experimental_rerun()
|
124 |
+
|
125 |
+
st.markdown("---")
|
126 |
+
st.markdown(
|
127 |
+
"<p style='text-align: center;color: gray;'>Developed by NYP student @ Min Thein Win: Student ID: 3907578Y</p>",
|
128 |
+
unsafe_allow_html=True
|
129 |
+
)
|
label_mappings.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db90d041f35923a582c2bd4e795ca06632b8b23e1e9eaab6622844ccc27c47c7
|
3 |
+
size 315
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.24.0
|
2 |
+
torch==2.0.0
|
3 |
+
transformers==4.27.0
|
4 |
+
pandas==1.5.3
|
ticket_classification_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4a507d772bd1ffe5ae6878e31ce1b86a479b69f204d682f775544098a6fbdb0
|
3 |
+
size 498701064
|