Commit
·
f511b08
1
Parent(s):
120cd79
update app
Browse files
app.py
CHANGED
@@ -5,7 +5,6 @@ import pickle
|
|
5 |
import pandas as pd
|
6 |
from transformers import RobertaTokenizerFast, RobertaModel
|
7 |
|
8 |
-
# -------------------------------
|
9 |
# Load label mappings
|
10 |
with open("label_mappings.pkl", "rb") as f:
|
11 |
label_mappings = pickle.load(f)
|
@@ -13,11 +12,10 @@ with open("label_mappings.pkl", "rb") as f:
|
|
13 |
label_to_team = label_mappings.get("label_to_team", {})
|
14 |
label_to_email = label_mappings.get("label_to_email", {})
|
15 |
|
16 |
-
|
17 |
# Load tokenizer
|
18 |
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
|
19 |
|
20 |
-
# -------------------------------
|
21 |
# Define RoBERTa Model for multi-task classification
|
22 |
class RoBertaClassifier(nn.Module):
|
23 |
def __init__(self, num_teams, num_emails):
|
@@ -33,7 +31,6 @@ class RoBertaClassifier(nn.Module):
|
|
33 |
email_logits = self.email_classifier(cls_output)
|
34 |
return team_logits, email_logits
|
35 |
|
36 |
-
# -------------------------------
|
37 |
# Initialize model and load checkpoint
|
38 |
num_teams = len(label_to_team)
|
39 |
num_emails = len(label_to_email)
|
@@ -47,7 +44,7 @@ device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cp
|
|
47 |
model.to(device)
|
48 |
model.eval()
|
49 |
|
50 |
-
|
51 |
# Prediction function
|
52 |
def predict_tickets(ticket_descriptions):
|
53 |
predictions = []
|
@@ -73,19 +70,23 @@ def predict_tickets(ticket_descriptions):
|
|
73 |
df = pd.DataFrame(csv_data, columns=["Index", "Description", "Assigned Team", "Team Email"])
|
74 |
return "\n".join(predictions), df
|
75 |
|
76 |
-
|
77 |
# Streamlit UI
|
78 |
-
|
79 |
-
|
80 |
st.markdown("""
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
""")
|
|
|
|
|
|
|
85 |
|
86 |
# Choose input method
|
87 |
option = st.radio("📝 Choose Input Method", ["Enter Text", "Upload CSV"])
|
88 |
|
|
|
89 |
if option == "Enter Text":
|
90 |
text_input = st.text_area(
|
91 |
"Enter Ticket Description/Comment/Summary (One per line)",
|
@@ -94,7 +95,6 @@ if option == "Enter Text":
|
|
94 |
descriptions = [line.strip() for line in text_input.split("\n") if line.strip()]
|
95 |
else:
|
96 |
file_input = st.file_uploader("Upload CSV", type=["csv"])
|
97 |
-
descriptions = []
|
98 |
if file_input is not None:
|
99 |
df_input = pd.read_csv(file_input)
|
100 |
if "Description" not in df_input.columns:
|
@@ -102,29 +102,47 @@ else:
|
|
102 |
else:
|
103 |
descriptions = df_input["Description"].dropna().tolist()
|
104 |
|
105 |
-
# Trigger prediction when the button is clicked
|
106 |
-
if st.button("PREDICT"):
|
107 |
-
if not descriptions:
|
108 |
-
st.error("⚠️ Please provide valid input.")
|
109 |
-
else:
|
110 |
-
with st.spinner("Predicting..."):
|
111 |
-
results, df_results = predict_tickets(descriptions)
|
112 |
-
st.markdown("## Prediction Results")
|
113 |
-
st.text(results)
|
114 |
-
csv_data = df_results.to_csv(index=False).encode('utf-8')
|
115 |
-
st.download_button(
|
116 |
-
label="📥 Download Predictions CSV",
|
117 |
-
data=csv_data,
|
118 |
-
file_name="ticket-predictions.csv",
|
119 |
-
mime="text/csv"
|
120 |
-
)
|
121 |
|
122 |
-
#
|
123 |
-
if st.
|
124 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
st.markdown("---")
|
127 |
st.markdown(
|
128 |
-
"<p style='text-align: center;color: gray;'>Developed by NYP student @ Min Thein Win: Student ID: 3907578Y</p>",
|
129 |
unsafe_allow_html=True
|
130 |
-
)
|
|
|
5 |
import pandas as pd
|
6 |
from transformers import RobertaTokenizerFast, RobertaModel
|
7 |
|
|
|
8 |
# Load label mappings
|
9 |
with open("label_mappings.pkl", "rb") as f:
|
10 |
label_mappings = pickle.load(f)
|
|
|
12 |
label_to_team = label_mappings.get("label_to_team", {})
|
13 |
label_to_email = label_mappings.get("label_to_email", {})
|
14 |
|
15 |
+
|
16 |
# Load tokenizer
|
17 |
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
|
18 |
|
|
|
19 |
# Define RoBERTa Model for multi-task classification
|
20 |
class RoBertaClassifier(nn.Module):
|
21 |
def __init__(self, num_teams, num_emails):
|
|
|
31 |
email_logits = self.email_classifier(cls_output)
|
32 |
return team_logits, email_logits
|
33 |
|
|
|
34 |
# Initialize model and load checkpoint
|
35 |
num_teams = len(label_to_team)
|
36 |
num_emails = len(label_to_email)
|
|
|
44 |
model.to(device)
|
45 |
model.eval()
|
46 |
|
47 |
+
|
48 |
# Prediction function
|
49 |
def predict_tickets(ticket_descriptions):
|
50 |
predictions = []
|
|
|
70 |
df = pd.DataFrame(csv_data, columns=["Index", "Description", "Assigned Team", "Team Email"])
|
71 |
return "\n".join(predictions), df
|
72 |
|
73 |
+
|
74 |
# Streamlit UI
|
75 |
+
st.markdown("<h2 style='text-align: center; font-size:22px;'>AI Solution for Defect Ticket Classification</h2>", unsafe_allow_html=True)
|
76 |
+
|
77 |
st.markdown("""
|
78 |
+
<p style='text-align: center; font-size:16px;'><strong>Supports:</strong> Multi-line text input & CSV upload.</p>
|
79 |
+
<p style='text-align: center; font-size:16px;'><strong>Output:</strong> Text results & downloadable CSV file.</p>
|
80 |
+
<p style='text-align: center; font-size:16px;'><strong>Model:</strong> Fine-tuned <strong>RoBERTa</strong> for classification.</p>
|
81 |
+
""", unsafe_allow_html=True)
|
82 |
+
|
83 |
+
st.markdown("<h3 style='font-size:16px;'>Enter ticket Description/Comment/Summary or upload a CSV file to predict Assigned Team & Team Email.</h3>", unsafe_allow_html=True)
|
84 |
+
|
85 |
|
86 |
# Choose input method
|
87 |
option = st.radio("📝 Choose Input Method", ["Enter Text", "Upload CSV"])
|
88 |
|
89 |
+
descriptions = []
|
90 |
if option == "Enter Text":
|
91 |
text_input = st.text_area(
|
92 |
"Enter Ticket Description/Comment/Summary (One per line)",
|
|
|
95 |
descriptions = [line.strip() for line in text_input.split("\n") if line.strip()]
|
96 |
else:
|
97 |
file_input = st.file_uploader("Upload CSV", type=["csv"])
|
|
|
98 |
if file_input is not None:
|
99 |
df_input = pd.read_csv(file_input)
|
100 |
if "Description" not in df_input.columns:
|
|
|
102 |
else:
|
103 |
descriptions = df_input["Description"].dropna().tolist()
|
104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
# Store prediction results in session state so they persist
|
107 |
+
if "prediction_results" not in st.session_state:
|
108 |
+
st.session_state.prediction_results = None
|
109 |
+
if "df_results" not in st.session_state:
|
110 |
+
st.session_state.df_results = None
|
111 |
+
|
112 |
+
# Create a horizontal layout for the buttons
|
113 |
+
col1, col2 = st.columns([1, 1])
|
114 |
+
|
115 |
+
with col1:
|
116 |
+
if st.button("PREDICT"):
|
117 |
+
if not descriptions:
|
118 |
+
st.error("⚠️ Please provide valid input.")
|
119 |
+
else:
|
120 |
+
with st.spinner("Predicting..."):
|
121 |
+
results, df_results = predict_tickets(descriptions)
|
122 |
+
st.session_state.prediction_results = results
|
123 |
+
st.session_state.df_results = df_results
|
124 |
+
|
125 |
+
# Display prediction results if available
|
126 |
+
if st.session_state.prediction_results:
|
127 |
+
st.markdown("<h3 style='font-size:16px;'>Prediction Results</h3>", unsafe_allow_html=True)
|
128 |
+
st.text(st.session_state.prediction_results)
|
129 |
+
csv_data = st.session_state.df_results.to_csv(index=False).encode('utf-8')
|
130 |
+
st.download_button(
|
131 |
+
label="📥 Download Predictions CSV",
|
132 |
+
data=csv_data,
|
133 |
+
file_name="ticket-predictions.csv",
|
134 |
+
mime="text/csv"
|
135 |
+
)
|
136 |
+
|
137 |
+
with col2:
|
138 |
+
if st.button("CLEAR"):
|
139 |
+
# Clear the prediction results from session state
|
140 |
+
st.session_state.prediction_results = None
|
141 |
+
st.session_state.df_results = None
|
142 |
+
st.rerun()
|
143 |
|
144 |
st.markdown("---")
|
145 |
st.markdown(
|
146 |
+
"<p style='text-align: center;color: gray; font-size:14px;'>Developed by NYP student @ Min Thein Win: Student ID: 3907578Y</p>",
|
147 |
unsafe_allow_html=True
|
148 |
+
)
|