mintheinwin's picture
update app
9770656
import gradio as gr
import torch
import torch.nn as nn
import pickle
import pandas as pd
from transformers import RobertaTokenizerFast, RobertaModel
# Implement by MinTheinWin@3907578Y
# Load label mappings
with open("label_mappings.pkl", "rb") as f:
label_mappings = pickle.load(f)
label_to_team = label_mappings.get("label_to_team", {})
label_to_email = label_mappings.get("label_to_email", {})
# Load the tokenizer
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
# Define RoBERTa Model
class RoBertaClassifier(nn.Module):
def __init__(self, num_teams, num_emails):
super(RoBertaClassifier, self).__init__()
self.roberta = RobertaModel.from_pretrained("roberta-base")
self.team_classifier = nn.Linear(self.roberta.config.hidden_size, num_teams)
self.email_classifier = nn.Linear(self.roberta.config.hidden_size, num_emails)
def forward(self, input_ids, attention_mask):
outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
cls_output = outputs.last_hidden_state[:, 0, :]
team_logits = self.team_classifier(cls_output)
email_logits = self.email_classifier(cls_output)
return team_logits, email_logits
# Load Model
num_teams = len(label_to_team)
num_emails = len(label_to_email)
model = RoBertaClassifier(num_teams, num_emails)
checkpoint = torch.load("ticket_classification_model.pth", map_location=torch.device("cpu"))
filtered_checkpoint = {k: v for k, v in checkpoint.items() if k in model.state_dict()}
model.load_state_dict(filtered_checkpoint, strict=False)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model.to(device)
model.eval()
# Prediction Function
def predict_tickets(ticket_descriptions):
predictions = []
csv_data = []
for idx, description in enumerate(ticket_descriptions, start=1):
inputs = tokenizer(description, return_tensors="pt", truncation=True, padding="max_length", max_length=128).to(device)
with torch.no_grad():
team_logits, email_logits = model(inputs.input_ids, inputs.attention_mask)
predicted_team_index = team_logits.argmax(dim=-1).cpu().item()
predicted_email_index = email_logits.argmax(dim=-1).cpu().item()
predicted_team = label_to_team.get(predicted_team_index, "Unknown Team")
predicted_email = label_to_email.get(predicted_email_index, "Unknown Email")
predictions.append(f"**{idx}. {description}**\n - **Assigned Team:** {predicted_team}\n - **Team Email:** {predicted_email}\n")
csv_data.append([idx, description, predicted_team, predicted_email])
df = pd.DataFrame(csv_data, columns=["Index", "Description", "Assigned Team", "Team Email"])
csv_file = "ticket-predictions.csv"
df.to_csv(csv_file, index=False)
return "\n".join(predictions), csv_file
# Gradio Functions
def gradio_predict(option, text_input, file_input):
if option == "Enter Text":
descriptions = text_input.split("\n")
descriptions = [desc.strip() for desc in descriptions if desc.strip()]
elif option == "Upload CSV" and file_input is not None:
df = pd.read_csv(file_input)
if "Description" not in df.columns:
return "⚠️ Error: CSV must contain a 'Description' column.", None
descriptions = df["Description"].tolist()
else:
return "⚠️ Please provide input.", None
results, csv_file = predict_tickets(descriptions)
return results, csv_file
def clear_inputs():
return "Enter Text", "", None, "", None
# Custom CSS for improved UI and fixed input container sizes
custom_css = """
.gradio-container {
max-width: 1000px !important;
margin: auto !important;
}
#title {
text-align: center;
font-size: 26px !important;
font-weight: bold;
}
#predict-button, #clear-button, #download-button {
width: 100% !important;
height: 55px !important;
font-size: 18px !important;
}
#results-box {
height: 350px !important;
overflow-y: auto !important;
background: #f9f9f9;
padding: 15px;
border-radius: 10px;
font-size: 16px;
}
/* Reduce vertical padding for the radio component */
#choose_input_method {
padding-top: 5px !important;
padding-bottom: 5px !important;
}
/* Force both input components to have the same min-height */
#text_input, #file_input {
min-height: 200px !important;
/* Optionally add a consistent border and padding to match styling */
border: 1px solid #ccc;
padding: 10px;
}
"""
# Gradio App UI
with gr.Blocks(css=custom_css) as app:
gr.Markdown(
"""
# AI Solution for Defect Ticket Classification
**Supports:** Multi-line text input & CSV upload.
**Output:** Text results & downloadable CSV file.
**Model:** Fine-tuned **RoBERTa** for classification.
Enter ticket Description/Comment/Summary or upload a **CSV file** to predict Assigned Team & Team Email.
""",
elem_id="title"
)
with gr.Row():
with gr.Column(scale=1):
# Radio component with elem_id for CSS targeting
option = gr.Radio(
["Enter Text", "Upload CSV"],
label="πŸ“ Choose Input Method",
value="Enter Text",
elem_id="choose_input_method"
)
# Both inputs are given an element id to force consistent dimensions.
text_input = gr.Textbox(
label="Enter Ticket Description/Comment/Summary (One per line)",
visible=True,
lines=6,
placeholder="Example:\n - Database performance issue\n - Login fails for admin users...",
elem_id="text_input"
)
file_input = gr.File(
label="πŸ“‚ Upload CSV (Optional)",
type="filepath",
visible=False,
elem_id="file_input"
)
with gr.Column(scale=1):
gr.Markdown("## Prediction Results")
results_output = gr.Markdown(elem_id="results-box", visible=True)
download_csv = gr.File(label="πŸ“₯ Download Predictions CSV", interactive=False)
with gr.Row():
predict_btn = gr.Button("PREDICT", variant="primary")
clear_btn = gr.Button("CLEAR", variant="secondary")
# Toggle the visibility of input components to ensure consistent sizing
def toggle_input(selected_option):
if selected_option == "Enter Text":
return gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=True)
option.change(fn=toggle_input, inputs=[option], outputs=[text_input, file_input])
predict_btn.click(fn=gradio_predict, inputs=[option, text_input, file_input], outputs=[results_output, download_csv])
clear_btn.click(fn=clear_inputs, inputs=[], outputs=[option, text_input, file_input, results_output, download_csv])
# Footer view
gr.Markdown("---")
gr.HTML(
"""
<div style="text-align: center; color: gray; padding-top: 10px;">
<p>Developed by NYP student @ Min Thein Win: Student ID: 3907578Y</p>
</div>
"""
)
# Launch App
app.launch(share=True)