Commit
Β·
5f47787
1
Parent(s):
b01a119
update app file and extra other file
Browse files- app.py +137 -4
- label_mappings.pkl +3 -0
- requirements.txt +6 -0
- ticket_classification_model.pth +3 -0
app.py
CHANGED
@@ -1,7 +1,140 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import pickle
|
5 |
+
import pandas as pd
|
6 |
+
from transformers import RobertaTokenizerFast, RobertaModel
|
7 |
|
8 |
+
# Load label mappings
|
9 |
+
with open("label_mappings.pkl", "rb") as f:
|
10 |
+
label_mappings = pickle.load(f)
|
11 |
|
12 |
+
label_to_team = label_mappings.get("label_to_team", {})
|
13 |
+
label_to_email = label_mappings.get("label_to_email", {})
|
14 |
+
|
15 |
+
# Load the tokenizer
|
16 |
+
tokenizer = RobertaTokenizerFast.from_pretrained("roberta-base")
|
17 |
+
|
18 |
+
# Define RoBERTa Model
|
19 |
+
class RoBertaClassifier(nn.Module):
|
20 |
+
def __init__(self, num_teams, num_emails):
|
21 |
+
super(RoBertaClassifier, self).__init__()
|
22 |
+
self.roberta = RobertaModel.from_pretrained("roberta-base")
|
23 |
+
self.team_classifier = nn.Linear(self.roberta.config.hidden_size, num_teams)
|
24 |
+
self.email_classifier = nn.Linear(self.roberta.config.hidden_size, num_emails)
|
25 |
+
|
26 |
+
def forward(self, input_ids, attention_mask):
|
27 |
+
outputs = self.roberta(input_ids=input_ids, attention_mask=attention_mask)
|
28 |
+
cls_output = outputs.last_hidden_state[:, 0, :]
|
29 |
+
|
30 |
+
team_logits = self.team_classifier(cls_output)
|
31 |
+
email_logits = self.email_classifier(cls_output)
|
32 |
+
|
33 |
+
return team_logits, email_logits
|
34 |
+
|
35 |
+
# Load Model
|
36 |
+
num_teams = len(label_to_team)
|
37 |
+
num_emails = len(label_to_email)
|
38 |
+
model = RoBertaClassifier(num_teams, num_emails)
|
39 |
+
checkpoint = torch.load("ticket_classification_model.pth", map_location=torch.device("cpu"))
|
40 |
+
filtered_checkpoint = {k: v for k, v in checkpoint.items() if k in model.state_dict()}
|
41 |
+
model.load_state_dict(filtered_checkpoint, strict=False)
|
42 |
+
|
43 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
44 |
+
model.to(device)
|
45 |
+
model.eval()
|
46 |
+
|
47 |
+
# Prediction Function
|
48 |
+
def predict_tickets(ticket_descriptions):
|
49 |
+
predictions = []
|
50 |
+
csv_data = []
|
51 |
+
for idx, description in enumerate(ticket_descriptions, start=1):
|
52 |
+
inputs = tokenizer(description, return_tensors="pt", truncation=True, padding="max_length", max_length=128).to(device)
|
53 |
+
with torch.no_grad():
|
54 |
+
team_logits, email_logits = model(inputs.input_ids, inputs.attention_mask)
|
55 |
+
predicted_team_index = team_logits.argmax(dim=-1).cpu().item()
|
56 |
+
predicted_email_index = email_logits.argmax(dim=-1).cpu().item()
|
57 |
+
predicted_team = label_to_team.get(predicted_team_index, "Unknown Team")
|
58 |
+
predicted_email = label_to_email.get(predicted_email_index, "Unknown Email")
|
59 |
+
predictions.append(f"**{idx}. {description}**\n - **Assigned Team:** {predicted_team}\n - **Team Email:** {predicted_email}\n")
|
60 |
+
csv_data.append([idx, description, predicted_team, predicted_email])
|
61 |
+
|
62 |
+
df = pd.DataFrame(csv_data, columns=["Index", "Description", "Assigned Team", "Team Email"])
|
63 |
+
csv_file = "ticket-predictions.csv"
|
64 |
+
df.to_csv(csv_file, index=False)
|
65 |
+
return "\n".join(predictions), csv_file
|
66 |
+
|
67 |
+
# Gradio Functions
|
68 |
+
def gradio_predict(option, text_input, file_input):
|
69 |
+
if option == "Enter Text":
|
70 |
+
descriptions = text_input.split("\n")
|
71 |
+
descriptions = [desc.strip() for desc in descriptions if desc.strip()]
|
72 |
+
elif option == "Upload CSV" and file_input is not None:
|
73 |
+
df = pd.read_csv(file_input)
|
74 |
+
if "Description" not in df.columns:
|
75 |
+
return "β οΈ Error: CSV must contain a 'Description' column.", None
|
76 |
+
descriptions = df["Description"].tolist()
|
77 |
+
else:
|
78 |
+
return "β οΈ Please provide input.", None
|
79 |
+
|
80 |
+
results, csv_file = predict_tickets(descriptions)
|
81 |
+
return results, csv_file
|
82 |
+
|
83 |
+
def clear_inputs():
|
84 |
+
return "Enter Text", "", None, "", None
|
85 |
+
|
86 |
+
# Gradio App UI
|
87 |
+
with gr.Blocks(css=".gradio-container {max-width: 1100px; margin: auto;}") as app:
|
88 |
+
gr.Markdown(
|
89 |
+
"""
|
90 |
+
# Multi-Ticket AI Classification System
|
91 |
+
|
92 |
+
**Supports:** Multi-line text input & CSV upload.
|
93 |
+
**Output:** Text results & downloadable CSV file.
|
94 |
+
**Model:** Fine-tuned **RoBERTa** for classification.
|
95 |
+
|
96 |
+
Enter ticket Description/Comment/Summary or upload a **CSV file** to predict Assigned Teams & Team Emails.
|
97 |
+
|
98 |
+
""",
|
99 |
+
elem_id="title"
|
100 |
+
)
|
101 |
+
|
102 |
+
with gr.Row():
|
103 |
+
with gr.Column(scale=1):
|
104 |
+
option = gr.Radio(["Enter Text", "Upload CSV"], label="π Choose Input Method", value="Enter Text")
|
105 |
+
|
106 |
+
text_input = gr.Textbox(
|
107 |
+
label="Enter Ticket Description/Comment/Summary (One per line)",
|
108 |
+
lines=6,
|
109 |
+
placeholder="Example:\n - Database performance issue\n - Login fails for admin users..."
|
110 |
+
)
|
111 |
+
|
112 |
+
file_input = gr.File(label="π Upload CSV (Optional)", type="filepath", visible=False)
|
113 |
+
|
114 |
+
with gr.Column(scale=1):
|
115 |
+
gr.Markdown("## Prediction Results") # **Title for Prediction Results**
|
116 |
+
results_output = gr.Markdown(elem_id="results-box", visible=True)
|
117 |
+
download_csv = gr.File(label="π₯ Download Predictions CSV", interactive=False)
|
118 |
+
|
119 |
+
with gr.Row():
|
120 |
+
predict_btn = gr.Button("PREDICT", variant="primary")
|
121 |
+
clear_btn = gr.Button("CLEAR", variant="secondary")
|
122 |
+
|
123 |
+
# Logic for Showing/ Hiding Input Fields
|
124 |
+
def toggle_input(selected_option):
|
125 |
+
return gr.update(visible=(selected_option == "Enter Text")), gr.update(visible=(selected_option == "Upload CSV"))
|
126 |
+
|
127 |
+
option.change(fn=toggle_input, inputs=[option], outputs=[text_input, file_input])
|
128 |
+
|
129 |
+
predict_btn.click(fn=gradio_predict, inputs=[option, text_input, file_input], outputs=[results_output, download_csv])
|
130 |
+
clear_btn.click(fn=clear_inputs, inputs=[], outputs=[option, text_input, file_input, results_output, download_csv])
|
131 |
+
|
132 |
+
# Footer view
|
133 |
+
gr.Markdown("---")
|
134 |
+
gr.Markdown(
|
135 |
+
"<p style='text-align: center;color: gray;'>"
|
136 |
+
"Developed by NYP student @ Min Thein Win: Student ID: 3907578Y</p>"
|
137 |
+
)
|
138 |
+
|
139 |
+
# Launch App
|
140 |
+
app.launch(share=True)
|
label_mappings.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:db90d041f35923a582c2bd4e795ca06632b8b23e1e9eaab6622844ccc27c47c7
|
3 |
+
size 315
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torch
|
3 |
+
torchvision
|
4 |
+
torchaudio
|
5 |
+
transformers
|
6 |
+
pandas
|
ticket_classification_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a33510b236c5dea7a1c00276dd933b302a10711c2a411fa059ca81e5651de030
|
3 |
+
size 498701000
|