Upload 12 files
Browse files- .gitattributes +7 -0
- app.py +301 -0
- examples/.DS_Store +0 -0
- examples/boar.jpg +3 -0
- examples/crow.jpg +3 -0
- examples/dragonfly.jpg +3 -0
- examples/macque.jpg +3 -0
- examples/otter.jpg +3 -0
- examples/parrot.jpg +3 -0
- examples/squirrel.jpg +3 -0
- logging_config.py +14 -0
- logo/logo.jpg +0 -0
- requirements.txt +4 -0
.gitattributes
CHANGED
@@ -33,3 +33,10 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
examples/boar.jpg filter=lfs diff=lfs merge=lfs -text
|
37 |
+
examples/crow.jpg filter=lfs diff=lfs merge=lfs -text
|
38 |
+
examples/dragonfly.jpg filter=lfs diff=lfs merge=lfs -text
|
39 |
+
examples/macque.jpg filter=lfs diff=lfs merge=lfs -text
|
40 |
+
examples/otter.jpg filter=lfs diff=lfs merge=lfs -text
|
41 |
+
examples/parrot.jpg filter=lfs diff=lfs merge=lfs -text
|
42 |
+
examples/squirrel.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import base64
|
3 |
+
import json
|
4 |
+
from typing import Optional, Tuple
|
5 |
+
|
6 |
+
import gradio as gr
|
7 |
+
import numpy as np
|
8 |
+
from open_clip import create_model_and_transforms, get_tokenizer
|
9 |
+
from PIL import Image
|
10 |
+
import requests
|
11 |
+
import torch
|
12 |
+
|
13 |
+
from logging_config import logger
|
14 |
+
from helpers import l2_normalize, encode_image
|
15 |
+
|
16 |
+
# Set your API Gateway URL below.
|
17 |
+
API_GATEWAY_URL = os.getenv(
|
18 |
+
"API_GATEWAY_URL",
|
19 |
+
""
|
20 |
+
)
|
21 |
+
|
22 |
+
API_GATEWAY_API_KEY = os.getenv(
|
23 |
+
"API_GATEWAY_API_KEY",
|
24 |
+
""
|
25 |
+
)
|
26 |
+
|
27 |
+
MODEL_NAME = os.getenv(
|
28 |
+
"MODEL_NAME",
|
29 |
+
"hf-hub:imageomics/bioclip"
|
30 |
+
)
|
31 |
+
|
32 |
+
# Load BioCLIP Model from Hugging Face
|
33 |
+
logger.info("Loading model from Hugging Face...")
|
34 |
+
model, _, preprocess = create_model_and_transforms(MODEL_NAME)
|
35 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
36 |
+
tokenizer = get_tokenizer(MODEL_NAME)
|
37 |
+
model = model.to(device)
|
38 |
+
logger.info(f"Model loaded on device successfully: {device}")
|
39 |
+
|
40 |
+
# Gradio App Function
|
41 |
+
def app_function(uploaded_image: Optional[np.ndarray]) -> Tuple[str, Optional[str], Optional[str], str]:
|
42 |
+
"""Main function for the Gradio app.
|
43 |
+
|
44 |
+
Processes the uploaded image, performs semantic search, and returns a summary, species information, and HTML output.
|
45 |
+
|
46 |
+
Args:
|
47 |
+
uploaded_image (Optional[np.ndarray]): Uploaded image as a NumPy array.
|
48 |
+
|
49 |
+
Returns:
|
50 |
+
Tuple[str, Optional[str], Optional[str], str]: Summary, proposed scientific name, proposed common name, and HTML output.
|
51 |
+
"""
|
52 |
+
if uploaded_image is None:
|
53 |
+
logger.error("app_function: No image uploaded.")
|
54 |
+
return "No image uploaded", None, None, ""
|
55 |
+
|
56 |
+
try:
|
57 |
+
image = Image.fromarray(uploaded_image)
|
58 |
+
except Exception as e:
|
59 |
+
logger.exception("app_function: Error processing image. Check if a valid image array is provided. Exception: %s", e)
|
60 |
+
return f"Error processing image: {e}", None, None, ""
|
61 |
+
|
62 |
+
try:
|
63 |
+
query_embedding = np.array(encode_image(image=image, preprocess=preprocess, model=model, device=device))
|
64 |
+
query_embedding = l2_normalize(query_embedding).tolist()
|
65 |
+
logger.info("app_function: Image encoded successfully. Embedding length: %d", len(query_embedding))
|
66 |
+
except Exception as e:
|
67 |
+
logger.exception("app_function: Error encoding image. Uploaded image shape: %s. Exception: %s", getattr(uploaded_image, 'shape', 'N/A'), e)
|
68 |
+
return f"Error encoding image: {e}", None, None, ""
|
69 |
+
|
70 |
+
payload = {"query_embedding": query_embedding}
|
71 |
+
headers = {"x-api-key": API_GATEWAY_API_KEY}
|
72 |
+
logger.info("app_function: Calling API Gateway with payload (embedding sample: %s...)", query_embedding[:5])
|
73 |
+
|
74 |
+
# Print the query embedding for debugging
|
75 |
+
# print(query_embedding)
|
76 |
+
|
77 |
+
try:
|
78 |
+
response = requests.post(API_GATEWAY_URL, json=payload, headers=headers)
|
79 |
+
logger.info("app_function: API Gateway responded with status code %d", response.status_code)
|
80 |
+
except Exception as e:
|
81 |
+
logger.exception("app_function: Exception during API Gateway call with payload: %s. Exception: %s", payload, e)
|
82 |
+
return f"Error calling API: {e}", None, None, ""
|
83 |
+
|
84 |
+
if response.status_code != 200:
|
85 |
+
logger.error("app_function: API Gateway returned error %d - %s", response.status_code, response.text)
|
86 |
+
return f"API error: {response.status_code} - {response.text}", None, None, ""
|
87 |
+
|
88 |
+
try:
|
89 |
+
body = response.json()
|
90 |
+
logger.info("app_function: Successfully parsed API Gateway response as JSON.")
|
91 |
+
|
92 |
+
# Print the response for debugging
|
93 |
+
# print(response.text)
|
94 |
+
# print(response.status_code)
|
95 |
+
|
96 |
+
# If body is a string with a list, try to load it
|
97 |
+
if isinstance(body, str):
|
98 |
+
try:
|
99 |
+
results = json.loads(body)
|
100 |
+
except Exception:
|
101 |
+
results = body
|
102 |
+
else:
|
103 |
+
results = body
|
104 |
+
except Exception as e:
|
105 |
+
logger.exception("app_function: Error decoding API Gateway response. Exception: %s", e)
|
106 |
+
return f"Error decoding response: {e}", None, None, ""
|
107 |
+
|
108 |
+
urls = []
|
109 |
+
image_urls = []
|
110 |
+
scientific_names = []
|
111 |
+
common_names = []
|
112 |
+
similarity_scores = []
|
113 |
+
|
114 |
+
for res in results:
|
115 |
+
urls.append(res.get("url", ""))
|
116 |
+
image_urls.append(res.get("image_url", ""))
|
117 |
+
scientific_names.append(res.get("scientific_name", "N/A"))
|
118 |
+
common_names.append(res.get("common_name", "N/A"))
|
119 |
+
similarity_scores.append(res.get("similarity", 0))
|
120 |
+
|
121 |
+
proposed_scientific = scientific_names[0]
|
122 |
+
proposed_common = common_names[0]
|
123 |
+
summary = "Found top 5 similar wildlife images."
|
124 |
+
|
125 |
+
# Build HTML output for the 5 boxes in horizontal arrangement.
|
126 |
+
boxes_html = "<div style='display: flex; justify-content: space-around; flex-wrap: nowrap;'>"
|
127 |
+
for url, image_url, sci, com, similarity_score in zip(urls, image_urls, scientific_names, common_names, similarity_scores):
|
128 |
+
try:
|
129 |
+
r = requests.get(image_url, timeout=5)
|
130 |
+
if r.status_code == 200:
|
131 |
+
encoded_img = base64.b64encode(r.content).decode("utf-8")
|
132 |
+
# Wrap the image in a container to keep it within fixed dimensions.
|
133 |
+
img_tag = f"""
|
134 |
+
<div style="width:200px; height:150px; overflow:hidden; display:flex; align-items:center; justify-content:center;">
|
135 |
+
<img src='data:image/jpeg;base64,{encoded_img}' style='max-width:100%; max-height:100%; object-fit: contain;'/>
|
136 |
+
</div>
|
137 |
+
"""
|
138 |
+
else:
|
139 |
+
img_tag = """
|
140 |
+
<div style="width:200px; height:150px; background:#eee; display:flex; align-items:center; justify-content:center;">
|
141 |
+
Error loading image
|
142 |
+
</div>
|
143 |
+
"""
|
144 |
+
except Exception as e:
|
145 |
+
logger.exception("app_function: Error loading image from URL: %s. Exception: %s", image_url, e)
|
146 |
+
img_tag = """
|
147 |
+
<div style="width:200px; height:150px; background:#eee; display:flex; align-items:center; justify-content:center;">
|
148 |
+
Error loading image
|
149 |
+
</div>
|
150 |
+
"""
|
151 |
+
|
152 |
+
box = f"""
|
153 |
+
<div style='text-align: center; margin: 10px; flex: 1; border: 1px solid #ccc; min-height: 250px; display: flex; flex-direction: column; align-items: center; justify-content: center;'>
|
154 |
+
{img_tag}
|
155 |
+
<div style='font-size: 12px; margin-top: 5px;'>
|
156 |
+
<div><a href="{url}" target="_blank">View on iNaturalist</a></div>
|
157 |
+
<div>Scientific: {sci}</div>
|
158 |
+
<div>Common: {com}</div>
|
159 |
+
<div>Similarity: {similarity_score:.2f}</div>
|
160 |
+
</div>
|
161 |
+
</div>
|
162 |
+
"""
|
163 |
+
boxes_html += box
|
164 |
+
boxes_html += "</div>"
|
165 |
+
|
166 |
+
logger.info("app_function: Results processed and returned to Gradio interface successfully.")
|
167 |
+
return summary, proposed_scientific, proposed_common, boxes_html
|
168 |
+
|
169 |
+
# Gradio Interface Using Blocks Layout
|
170 |
+
with gr.Blocks(title="Wildlife Semantic Search with BioCLIP") as demo:
|
171 |
+
# Custom CSS to fix the display size of the uploaded image.
|
172 |
+
gr.HTML(
|
173 |
+
"""
|
174 |
+
<style>
|
175 |
+
/* Force the uploaded image to fit within 300x300px while preserving aspect ratio */
|
176 |
+
#fixedImage img {
|
177 |
+
object-fit: contain;
|
178 |
+
width: 300px;
|
179 |
+
height: 300px;
|
180 |
+
}
|
181 |
+
/* Style the logo to remove whitespace */
|
182 |
+
.logo-image {
|
183 |
+
object-fit: cover;
|
184 |
+
object-position: center;
|
185 |
+
width: 100%;
|
186 |
+
height: 100%;
|
187 |
+
display: block;
|
188 |
+
margin: 0;
|
189 |
+
padding: 0;
|
190 |
+
}
|
191 |
+
/* Custom style for the submit button */
|
192 |
+
.submit-button {
|
193 |
+
background: linear-gradient(90deg, green 0%, green 70%, orange 100%) !important;
|
194 |
+
color: white !important;
|
195 |
+
font-weight: bold !important;
|
196 |
+
}
|
197 |
+
</style>
|
198 |
+
"""
|
199 |
+
)
|
200 |
+
|
201 |
+
# Row 1: Logo and Description in two columns.
|
202 |
+
with gr.Row(variant="panel"):
|
203 |
+
with gr.Column(scale=1):
|
204 |
+
gr.Image("logo/logo.jpg", elem_classes=["logo-image"], show_label=False)
|
205 |
+
with gr.Column(scale=30):
|
206 |
+
gr.Markdown(
|
207 |
+
"""
|
208 |
+
### Welcome to Ecologist – Singapore's AI-powered biodiversity explorer!
|
209 |
+
|
210 |
+
**Ecologist** identifies wildlife species found in Singapore from an uploaded photo.
|
211 |
+
|
212 |
+
Powered by multimodal image retrieval and visual encoding with [BioCLIP](https://huggingface.co/imageomics/bioclip), the system extracts features from the image and matches them against a specialized database of Singapore's diverse flora and fauna.
|
213 |
+
|
214 |
+
Both scientific and common names are provided within seconds, along with visually similar images that offer context about Singapore's rich natural heritage.
|
215 |
+
|
216 |
+
Ecologist is a step towards celebrating and preserving the island country’s unique wildlife through AI.
|
217 |
+
"""
|
218 |
+
)
|
219 |
+
|
220 |
+
# Row 2: Image Upload with a fixed display container.
|
221 |
+
with gr.Row(variant="panel"):
|
222 |
+
with gr.Column():
|
223 |
+
image_input = gr.Image(type="numpy", label="Upload Wildlife Image", elem_id="fixedImage")
|
224 |
+
|
225 |
+
# Row 3: Submit Button.
|
226 |
+
submit_button = gr.Button("Submit", elem_classes=["submit-button"])
|
227 |
+
|
228 |
+
with gr.Row(variant="panel"):
|
229 |
+
with gr.Column():
|
230 |
+
gr.Examples(
|
231 |
+
examples=[
|
232 |
+
["examples/boar.jpg"],
|
233 |
+
["examples/crow.jpg"],
|
234 |
+
["examples/dragonfly.jpg"],
|
235 |
+
["examples/macque.jpg"],
|
236 |
+
["examples/otter.jpg"],
|
237 |
+
["examples/parrot.jpg"],
|
238 |
+
["examples/squirrel.jpg"],
|
239 |
+
],
|
240 |
+
inputs=image_input,
|
241 |
+
outputs=None,
|
242 |
+
label="Example Wildlife Images",
|
243 |
+
)
|
244 |
+
|
245 |
+
# Row 4: Proposed Species Output.
|
246 |
+
with gr.Row(variant="panel"):
|
247 |
+
with gr.Column():
|
248 |
+
gr.Markdown("## Identified Species")
|
249 |
+
|
250 |
+
with gr.Row(variant="panel"):
|
251 |
+
with gr.Column():
|
252 |
+
proposed_scientific_output = gr.Textbox(label="Scientific Name", placeholder="No name yet")
|
253 |
+
with gr.Column():
|
254 |
+
proposed_common_output = gr.Textbox(label="Common Name", placeholder="No name yet")
|
255 |
+
|
256 |
+
# Row 5: Pre-populated placeholder for 5 columns with borders.
|
257 |
+
with gr.Row(variant="panel"):
|
258 |
+
with gr.Column():
|
259 |
+
gr.Markdown("## Most Similar Wildlife Images from Database")
|
260 |
+
|
261 |
+
placeholder_boxes = "<div style='display: flex; justify-content: space-around; flex-wrap: nowrap;'>"
|
262 |
+
for _ in range(5):
|
263 |
+
placeholder_boxes += """
|
264 |
+
<div style='text-align: center; margin: 10px; flex: 1; border: 1px solid #ccc; min-height: 250px; display: flex; align-items: center; justify-content: center;'>
|
265 |
+
No image yet
|
266 |
+
</div>
|
267 |
+
"""
|
268 |
+
placeholder_boxes += "</div>"
|
269 |
+
|
270 |
+
with gr.Row(variant="panel"):
|
271 |
+
with gr.Column():
|
272 |
+
html_output = gr.HTML(value=placeholder_boxes, container=True)
|
273 |
+
|
274 |
+
with gr.Row(variant="panel"):
|
275 |
+
with gr.Column():
|
276 |
+
gr.Markdown(
|
277 |
+
"""
|
278 |
+
**Disclaimer:**
|
279 |
+
Not intended for commercial use, no user data is stored or used for training purposes, and all retrieval data is sourced from [iNaturalist](https://inaturalist.org/). Results may vary depending on the input image.
|
280 |
+
|
281 |
+
**References:**
|
282 |
+
This project is inspired by the work on [Biome](https://huggingface.co/spaces/govtech/Biome) from GovTech Singapore.
|
283 |
+
|
284 |
+
**Acknowledgments:**
|
285 |
+
Gratitude to [Dylan Chan](https://www.pexels.com/@dylan-chan-2880813/), [Jesper](https://www.pexels.com/@jesper-425001880/), [Mark Baldovino](https://www.pexels.com/@odlab2/), [Sane Noor](https://www.pexels.com/@norsan/), [Soumen Chakraborty](https://www.pexels.com/@soumen-chakraborty-363019169/), [Tony Wu](https://www.pexels.com/@tonywuphotography/) and [Zett Foto](https://www.pexels.com/@zett-foto-194587/) for their wildlife images in [Pexels](https://www.pexels.com/).
|
286 |
+
"""
|
287 |
+
)
|
288 |
+
|
289 |
+
# Wrapping the function to only forward the necessary outputs.
|
290 |
+
def wrapper(uploaded_image):
|
291 |
+
summary, proposed_scientific, proposed_common, boxes_html = app_function(uploaded_image)
|
292 |
+
|
293 |
+
# Print the summary for debugging
|
294 |
+
# print(summary)
|
295 |
+
|
296 |
+
return proposed_scientific, proposed_common, boxes_html
|
297 |
+
|
298 |
+
submit_button.click(fn=wrapper, inputs=image_input, outputs=[proposed_scientific_output, proposed_common_output, html_output])
|
299 |
+
|
300 |
+
if __name__ == "__main__":
|
301 |
+
demo.launch()
|
examples/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
examples/boar.jpg
ADDED
![]() |
Git LFS Details
|
examples/crow.jpg
ADDED
![]() |
Git LFS Details
|
examples/dragonfly.jpg
ADDED
![]() |
Git LFS Details
|
examples/macque.jpg
ADDED
![]() |
Git LFS Details
|
examples/otter.jpg
ADDED
![]() |
Git LFS Details
|
examples/parrot.jpg
ADDED
![]() |
Git LFS Details
|
examples/squirrel.jpg
ADDED
![]() |
Git LFS Details
|
logging_config.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
|
3 |
+
# Configure logging
|
4 |
+
logging.basicConfig(
|
5 |
+
level=logging.INFO, # Set the default logging level
|
6 |
+
format="%(asctime)s - %(levelname)s - %(message)s",
|
7 |
+
handlers=[
|
8 |
+
logging.StreamHandler(), # Log to the console
|
9 |
+
logging.FileHandler("app.log", mode="a") # Log to a file
|
10 |
+
]
|
11 |
+
)
|
12 |
+
|
13 |
+
# Create a logger instance
|
14 |
+
logger = logging.getLogger(__name__)
|
logo/logo.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
open-clip-torch==2.30.0
|
2 |
+
torch==2.6.0
|
3 |
+
gradio==5.15.0
|
4 |
+
requests==2.31.0
|